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Let R be a commutative ring with nonzero identity, Z(R) be its set of zero-divisors, and
if a € Z(R), then let anng(a) = {d € R|da = 0}. The annihilator graph of R is the
(undirected) graph AG(R) with vertices Z(R)* = Z(R)\{0}, and two distinct vertices
x and y are adjacent if and only if anng(xy) # anng(x) U anng(y). It follows that
each edge (path) of the zero-divisor graph T'(R) is an edge (path) of AG(R). In this
article, we study the graph AG(R). For a commutative ring R, we show that AG(R) is
connected with diameter at most two and with girth at most four provided that AG(R)
has a cycle. Among other things, for a reduced commutative ring R, we show that the
annihilator graph AG(R) is identical to the zero-divisor graph I'(R) if and only if R
has exactly two minimal prime ideals.
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1. INTRODUCTION

Let R be a commutative ring with nonzero identity, and let Z(R) be its set
of zero-divisors. Recently, there has been considerable attention in the literature
to associating graphs with algebraic structures (see [8, 11-14]). Probably the most
attention has been to the zero-divisor graph T'(R) for a commutative ring R. The
set of vertices of I'(R) is Z(R)*, and two distinct vertices x and y are adjacent if
and only if xy = 0. The concept of a zero-divisor graph goes back to Beck [6],
who let all elements of R be vertices and was mainly interested in colorings. The
zero-divisor graph was introduced by David F. Anderson and Paul S. Livingston
in [3], where it was shown, among other things, that I'(R) is connected with
diam(I'(R)) € {0, 1,2, 3} and gr(I'(R)) € {3, 4, oo}. For a recent survey article on
zero-divisor graphs, see [5]. In this article, we introduce the annihilator graph AG(R)
for a commutative ring R. Let a € Z(R) and let anng(a) = {r € R|ra = 0}. The
annihilator graph of R is the (undirected) graph AG(R) with vertices Z(R)* =
Z(R)\{0}, and two distinct vertices x and y are adjacent if and only if anng(xy) #
anng(x) U anng(y). It follows that each edge (path) of I'(R) is an edge (path) of
AG(R).
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In the second section, we show that AG(R) is connected with diameter at most
two (Theorem 2.2). If AG(R) is not identical to I'(R), then we show that gr(AG(R))
(i.e., the length of a smallest cycle) is at most four (Corollary 2.11). In the third
section, we determine when AG(R) is identical to I'(R). For a reduced commutative
ring R, we show that AG(R) is identical to I'(R) if and only if R has exactly two
distinct minimal prime ideals (Theorem 3.6). Among other things, we determine
when AG(R) is a complete graph, a complete bipartite graph, or a star graph.

Let I be a (undirected) graph. We say that I' is connected if there is a path
between any two distinct vertices. For vertices x and y of I', we define d(x, y) to be
the length of a shortest path from x to y (d(x, x) = 0 and d(x, y) = oo if there is no
path). Then the diameter of T" is diam(I') = sup{d(x, y) | x and y are vertices of I'}.
The girth of T, denoted by gr(I), is the length of a shortest cycle in I" (gr(I') = oo if
I' contains no cycles).

A graph T is complete if any two distinct vertices are adjacent. The complete
graph with n vertices will be denoted by K" (we allow n to be an infinite cardinal).
A complete bipartite graph is a graph I' which may be partitioned into two disjoint
nonempty vertex sets A and B such that two distinct vertices are adjacent if and only
if they are in distinct vertex sets. If one of the vertex sets is a singleton, then we call
I' a star graph. We denote the complete bipartite graph by K", where |A| = m and
|B| = n (again, we allow m and n to be infinite cardinals); so a star graph is a K"
and K> denotes a star graph with infinitely many vertices. Finally, let K" be the
graph formed by joining I, = K™3 (= AU B with |A| = m and |B| = 3) to the star
graph I, = K" by identifying the center of I, and a point of B.

Throughout, R will be a commutative ring with nonzero identity, Z(R) its set
of zero-divisors, Nil(R) its set of nilpotent elements, U(R) its group of units, T(R) its
total quotient ring, and Min(R) its set of minimal prime ideals. For any A C R, let
A* = A\{0}. We say that R is reduced if Nil(R) = {0} and that R is quasi-local if R
has a unique maximal ideal. The distance between two distinct vertices a, b of I'(R)
is denoted by dp (a, b). If AG(R) is identical to I'(R), then we write AG(R) = I'(R);
otherwise, we write AG(R) # I'(R). As usual, Z and Z, will denote the integers and
integers modulo n, respectively. Any undefined notation or terminology is standard,
as in [9] or [7].

2. BASIC PROPERTIES OF AG(R)

In this section, we show that AG(R) is connected with diameter at most two. If
AG(R) # I'(R), we show that gr(AG(R)) € {3, 4}. If |Z(R)*| = 1 for a commutative
ring R, then R is ring-isomorphic to either Z, or Z,[X]/(X?) and hence AG(R) =
I'(R). Since commutative rings with exactly one nonzero zero-divisor are studied in
[2, 3, 10], throughout this article we only consider commutative rings with at least
two nonzero zero-divisors.

We begin with a lemma containing several useful properties of AG(R).

Lemma 2.1. Letr R be a commutative ring.

(1) Let x,y be distinct elements of Z(R)*. Then x — y is not an edge of AG(R) if and

only if anng(xy) = anng(x) or anngy(xy) = anng(y).
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(2) If x — y is an edge of I'(R) for some distinct x,y € Z(R)*, then x — y is an edge of
AG(R). In particular, if P is a path in I'(R), then P is a path in AG(R).

(3) If x — y is not an edge of AG(R) for some distinct x,y € Z(R)*, then anngz(x) <
anng(y) or anng(y) C anng(x).

(4) If anng(x) € anng(y) and anng(y) € anng(x) for some distinct x, y € Z(R)*, then
x —y is an edge of AG(R).

(5) If dp)(x, y) = 3 for some distinct x,y € Z(R)", then x —y is an edge of AG(R).

(6) If x — y is not an edge of AG(R) for some distinct x,y € Z(R)*, then there is a
w € Z(R)*\{x, y} such that x — w — y is a path in I'(R), and hence x — w — y is also
a path in AG(R).

Proof. (1) Suppose that x —y is not an edge of AG(R). Then anng(xy) =
anng(x) U anng(y) by definition. Since anng(xy) is a union of two ideals, we have
anng(xy) = anng(x) or anng(xy) = anng(y). Conversely, suppose that anng(xy) =
anng(x) or anng(xy) = anng(y). Then anngy(xy) = anngx(x) U anng(y), and thus x —
y is not an edge of AG(R).

(2) Suppose that x — y is an edge of I'(R) for some distinct x, y € Z(R)*. Then
xy = 0 and hence anng(xy) = R. Since x # 0 and y # 0, anng(x) # R and anng(y) #
R. Thus x — y is an edge of AG(R). The “in particular” statement is now clear.

(3) Suppose that x —y is not an edge of AG(R) for some distinct x,y €
Z(R)*. Then anngy(x) U anngx(y) = anng(xy). Since anng(xy) is a union of two ideals,
we have anngy(x) € anng(y) or anng(y) C anng(x).

(4) This statement is now clear by (3).

(5) Suppose that dpg (x,y) =3 for some distinct x,y € Z(R)*. Then
anng(x) € anng(y) and anng(y) € anng(x). Hence x — y is an edge of AG(R) by (4).

(6) Suppose that x —y is not an edge of AG(R) for some distinct x,y €
Z(R)*. Then there is a w € anngz(x) N anngx(y) such that w # 0 by (3). Since xy # 0,
we have w € Z(R)*\{x, y}. Hence x — w — y is a path in I'(R), and thus x — w — y is
a path in AG(R) by (2). O

In view of (6) in the preceding lemma, we have the following result.

Theorem 2.2. Let R be a commutative ring with |Z(R)*| > 2. Then AG(R) is
connected and diam(AG(R)) < 2.

Lemma 2.3. Let R be a commutative ring, and let x,y be distinct nonzero elements.
Suppose that x — y is an edge of AG(R) that is not an edge of I'(R) for some distinct
X,y € Z(R)*. If there is a w € anng(xy)\{x, y} such that wx # 0 and wy # 0, then x —
w — y is a path in AG(R) that is not a path in I'(R), and hence C: x —w —y —x is a
cycle in AG(R) of length three and each edge of C is not an edge of I'(R).

Proof. Suppose that x — y is an edge of AG(R) that is not an edge of I'(R). Then
xy # 0. Assume there is a w € anngx(xy)\{x, y} such that wx # 0 and wy # 0. Since
y € anng(xw)\(anng(x) U anng(w)), we conclude that x — w is an edge of AG(R).
Since x € anngz(yw)\(anng(y) U anngz(w)), we conclude that y —w is an edge of
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AG(R). Hence x —w — y is a path in AG(R). Since xw # 0 and yw # 0, we have
x —w — y is not a path in I'(R). It is clear that x — w — y — x is a cycle in AG(R) of
length three and each edge of C is not an edge of I'(R). O

Theorem 2.4. Let R be a commutative ring. Suppose that x — y is an edge of AG(R)
that is not an edge of I'(R) for some distinct x, y € Z(R)*. If xy* # 0 and x*y # 0, then
there is a w € Z(R)* such that x — w — y is a path in AG(R) that is not a path in I'(R),
and hence C : x —w — y — x is a cycle in AG(R) of length three and each edge of C is
not an edge of T'(R).

Proof. Suppose that x —y is an edge of AG(R) that is not an edge of I'(R).
Then xy # 0 and there is a w € anng(xy)\(anngx(x) U anng(y)). We show w ¢ {x, y}.
Assume w € {x, y}. Then either x>y = 0 or y’x = 0, which is a contradiction. Thus
w ¢ {x,y}. Hence x — w — y is the desired path in AG(R) by Lemma 2.3. d

Corollary 2.5. Let R be a reduced commutative ring. Suppose that x — y is an edge
of AG(R) that is not an edge of I'(R) for some distinct x,y € Z(R)*. Then there is a
w € anng(xy)\{x, y} such that x — w — y is a path in AG(R) that is not a path in I'(R),
and hence C: x —w —y — x is a cycle in AG(R) of length three and each edge of C is
not an edge of I'(R).

Proof. Suppose that x — y is an edge of AG(R) that is not an edge of I'(R) for
some distinct x, y € Z(R)*. Since R is reduced, we have (xy)? # 0. Hence xy* # 0
and x?y # 0, and thus the claim is now clear by Theorem 2.4. O

In light of Corollary 2.5, we have the following result.

Theorem 2.6. Let R be a reduced commutative ring, and suppose that AG(R) #
I'(R). Then gr(AG(R)) = 3. Furthermore, there is a cycle C of length three in AG(R)
such that each edge of C is not an edge of I'(R).

In view of Theorem 2.4, the following is an example of a nonreduced
commutative ring R where x — y is an edge of AG(R) that is not an edge of I'(R)
for some distinct x, y € Z(R)*, but every path in AG(R) of length two from x to y
is also a path in I'(R).

Example 2.7. Let R = Z;. Then 2 — 6 is an edge of AG(R) that is not an edge
of I'(R). Now 2 —4 —6 is the only path in AG(R) of length two from 2 to 6
and it is also a path in T'(R). Note that AG(R) = K°, [(R) = K'?, gr(I(R)) = oo,
gr(AG(R)) = 3, diam(I'(R)) = 2, and diam(AG(R)) = 1.

The following is an example of a nonreduced commutative ring R such that
AG(R) # I'(R) and if x — y is an edge of AG(R) that is not an edge of I'(R) for some
distinct x, y € Z(R)*, then there is no path in AG(R) of length two from x to y.

Example 2.8.

(1) Let R=7Z, xZ, and let a = (0,1),b = (1, 2), and ¢ = (0, 3). Then a — b and
¢ — b are the only two edges of AG(R) that are not edges of I'(R), but there is
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no path in AG(R) of length two from a to b and there is no path in AG(R) of
length two from ¢ to b. Note that AG(R) = K>3, T(R) = K, gr(AG(R)) = 4,
gr(I'(R)) = oo, diam(AG(R) = 2, and diam(I'(R)) = 3.

(2) Let R=17Z, x Z,[X]/(X?). Let x=X+(X?) €Z,[X]/(X?), a=(0,1),b=
(1,x), and ¢ =(0,14x). Then a —b and ¢ — b are the only two edges of
AG(R) that are not edges of I'(R), but there is no path in AG(R) of length
two from a to b and there is no path in AG(R) of length two from c¢ to b.
Again, note that AG(R) = kK>3, T(R) =K, gr(AG(R)) =4, gr(I(R)) = oo,
diam(AG(R) = 2, and diam(I'(R)) = 3.

Theorem 2.9. Let R be a commutative ring and suppose that AG(R) # I'(R). Then
the following statements are equivalent:

(1) gr(AG(R)) = 4;

(2) gr(AG(R)) # 3;

(3) If x — y is an edge of AG(R) that is not an edge of I'(R) for some distinct x,y €
Z(R)*, then there is no path in AG(R) of length two from x to y;

(4) There are some distinct x,y € Z(R)* such that x — y is an edge of AG(R) that is
not an edge of I'(R) and there is no path in AG(R) of length two from x to y;

(5) R is ring-isomorphic to either Z, x Z, or Z, x Z,[X]/(X?).

Proof. (1) = (2). No comments.

(2) = (3). Suppose that x —y is an edge of AG(R) that is not an edge of
I'(R) for some distinct x, y € Z(R)*. Since gr(AG(R)) # 3, there is no path in AG(R)
of length two from x to y.

(3) = (4). Since AG(R)) # I'(R) by hypothesis, there are some distinct x, y €
Z(R)* such that x — y is an edge of AG(R) that is not an edge of I'(R), and hence
there is no path in AG(R) of length two from x to y by (3).

(4) = (5). Suppose there are some distinct x, y € Z(R)* such that x —y is
an edge of AG(R) that is not an edge of I'(R) and there is no path in AG(R) of
length two from x to y. Then anngy(x) N anng(y) = {0}. Since xy # 0 and anngy(x) N
anng(y) = {0}, by Lemma 2.3 we conclude that anng(xy) = anng(x) U anngx(y) U
{y} such that y*> # 0 or anng(xy) = anny(x) U anng(y) U {x} such that x> # 0 (note
that if {x, y} € anng(xy), then x —xy —y is a path in AG(R) of length two).
Without lost of generality, we may assume that anngz(xy) = anng(x) U anng(y) U {y}
and y? # 0. Let a be a nonzero element of anng(x) and b be a nonzero element
of anng(y). Since anngz(x) Nanng(y) = {0}, we have a + b € anny(xy)\(anngz(x) U
anng(y)), and hence a + b = y. Thus |anng(x)| = |anng(y)| = 2. Since xy* = 0, we
have anng(x) = {0,y*} and anng(y) = {0, xy}. Since y*+ xy =y, we have (y*+
xy)? = y%. Since xy* =0 and xy?> = x*y> =0, we have (y> + xy)> = y*> implies that
y* = y%. Since y* # 0 and y* = y?, we have y? is a nonzero idempotent of R. Hence
anng(xy) = anng(x) U anngy(y) U {y} = {0, y?, xy, y}. Thus anny(xy) € yR and since
YR C anng(xy), we conclude anng(xy) = yR = {0, y*, xy, y}. Since y> + xy = y and
y* =32, we have (y*>+ xy)’ =y and hence y* = y>. Thus y’R = y(yR) = {0, y*}.
Since y? is a nonzero idempotent of R and y’R is a ring with two elements, we
conclude that y’R is ring-isomorphic to Z,. Let f € anngx(y*). Then y*f = y(yf) =
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0, and thus yf € anny(y). Hence either yf = 0 or yf = yx. Suppose yf = 0. Since
anng(y) = {0, xy}, either f =0 or f = xy. Suppose yf = yx. Then y(f —x) =0,
and thus f —x=0 or f—x=xy. Hence f =x or f=x+xy. It is clear that
0, x, xy, x + xy are distinct elements of R and thus anng(y*) = {0, x, xy, x + xy}.
Since anng(y*) = (1 — y*)R, we have (1 — y*)R = {0, x, xy, x + xy}. Since (1 — y*)R
is a ring with four elements, we conclude that (1 — y*)R is ring-isomorphic to either
Z, or Z, x Z, or F, or Z,[X]/(X?). Since x — y is an edge of AG(R) that is not an
edge of I'(R) and there is no path in AG(R) of length two from x to y by hypothesis,
we conclude that R is non-reduced by Corollary 2.5. Since R is ring-isomorphic to
y*R x (1 — y*)R and non-reduced, we conclude that R is ring-isomorphic to either
Z, x Z, or Z, x Z,[X]/(X?).

(5) = (1). See Example 2.8. O

Corollary 2.10. Let R be a commutative ring such that AG(R) # I'(R), and assume
that R is not ring-isomorphic to Z, x B, where B =17, or B = Z,[X]/(X?). If E is an
edge of AG(R) that is not an edge of I'(R), then E is an edge of a cycle of length three
in AG(R).

Corollary 2.11. Let R be a commutative ring such that AG(R) # I'(R). Then
gr(AG(R)) € {3, 4}.

Proof. This result is a direct implication of Theorem 2.9. O

3. WHEN IS AG(R) IDENTICAL TO I'(R)?

Let R be a commutative ring such that |Z(R)*| > 2. Then diam(I'(R)) €
{1, 2,3} by [3, Theorem 2.3]. Hence, if I'(R) = AG(R), then diam(I'(R)) € {1, 2} by
Theorem 2.2. We recall the following results.

Lemma 3.1.

(1) [3, the proof of Theorem 2.8] Let R be a reduced commutative ring that is not an
integral domain. Then T'(R) is complete if and only if R is ring-isomorphic to Z, X
Z,.

(2) [10, Theorem 2.6(3)] Let R be a commutative ring. Then diam(I'(R)) = 2 if and
only if either (i) R is reduced with exactly two minimal primes and at least three
nonzero zero divisors, or (it) Z(R) is an ideal whose square is not {0} and each
pair of distinct zero divisors has a nonzero annihilator.

We first study the case when R is reduced.

Lemma 3.2. Let R be a reduced commutative ring that is not an integral domain, and
let z € Z(R)*. Then:

(1) anng(z) = anngx(z") for each positive integer n > 2;

(2) If ¢+ z € Z(R) for some c € anngx(z)\{0}, then anny(z + c) is properly contained
in anng(z) (i.e., anng(c + z) C anng(z)). In particular, if Z(R) is an ideal of R
and c € anng(z)\{0}, then anng(z + c) is properly contained in anng(z).
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Proof. (1) Let n > 2. Itis clear that anng(z) € anng(z"). Let f € anng(z"). Since
fz2" =0 and R is reduced, we have fz = 0. Thus anng(z") = anng(z).

(2) Let c € anng(z)\{0}, and suppose hat ¢ + z € Z(R). Since z*> # 0, we have
¢+ z # 0, and hence ¢ + z € Z(R)*. Since ¢ € anng(z) and R is reduced, we have ¢ ¢
anng(c + z). Hence anng(c + z) # anng(z). Since anng(c + z) C anng(z(c +z)) =
anng(z%) and anng(z*) = anng(z) by (1), it follows that anng(c + z) C anng(z).

Theorem 3.3. Let R be a reduced commutative ring that is not an integral domain.
Then the following statements are equivalent:

(1) AG(R) is complete;
(2) T(R) is complete (and hence AG(R) = I'(R));
(3) R is ring-isomorphic to Z, X Z,.

Proof. (1) = (2). Let a € Z(R)*. Suppose that a*> # a. Since anng(a®) = anng(a)
by Lemma 3.2(1) and @’ #0, we have a —a®> is not an edge of AG(R), a
contradiction. Thus a®> = a for each a € Z(R). Let x, y be distinct elements in Z(R)*.
We show that x — y is an edge of I'(R). Suppose that xy # 0. Since x — y is an edge
of AG(R), we have anny(xy) # anng(x), and thus xy # x. Since x*> = x, we have
anng(x(xy)) = anng(x’y) = anng(xy), and thus x — xy is not an edge of AG(R), a
contradiction. Hence xy = 0 and x — y is an edge of I'(R).

(2) = (3). It follows from Lemma 3.1(1).
(3) = (1). Tt is easily verified. 0

Let R be a reduced commutative ring with |Min(R)| > 2. If Z(R) is an
ideal of R, then Min(R) must be infinite, since Z(R) = U{Q|Q € Min(R)}. For the
construction of a reduced commutative ring R with infinitely many minimal prime
ideals such that Z(R) is an ideal of R, see [10, Section 5 (Examples)] and [1,
Example 3.13].

Theorem 3.4. Let R be a reduced commutative ring that is not an integral domain,
and assume that Z(R) is an ideal of R. Then AG(R) # I'(R) and gr(AG(R)) = 3.

Proof. Let z € Z(R)*, c¢ € anng(z)\{0}, and m € anngx(c+ z)\{0}. Then m e
anng(c +z) C anngx(z) by Lemma 3.2(2), and thus mc = 0. Since ¢?> # 0, we have
m # ¢, and hence ¢ + z # m + z. Since {c, m} € anny(z) and 7> # 0, we have ¢ + z
and m + z are nonzero distinct elements of Z(R). Since (m + z)(c +z) = z> # 0, we
have (¢ +z) — (m + z) is not an edge of I'(R). Since ¢? # 0 and m? # 0, it follows
that (¢ +m) € anng(z*)\(anng(c + z) U anng(m + z)), and thus (c +z) — (m +z) is
an edge of AG(R). Since (¢ 4+ z) — (m + z) is an edge of AG(R) that is not an edge
of I'(R), we have AG(R) # I'(R). Since R is reduced and AG(R) # I'(R), we have
gr(AG(R)) = 3 by Theorem 2.6. O

Theorem 3.5. Let R be a reduced commutative ring with |Min(R)| > 3 (possibly
Min(R) is infinite). Then AG(R) # I'(R) and gr(AG(R)) = 3.
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Proof. 1If Z(R) is an ideal of R, then AG(R) # I'(R) by Theorem 3.4. Hence assume
that Z(R) is not an ideal of R. Since |Min(R)| > 3, we have diam(I'(R)) =3 by
Lemma 3.1(2), and thus AG(R) # I'(R) by Theorem 2.2. Since R is reduced and
AG(R) # I'(R), we have gr(AG(R)) = 3 by Theorem 2.6. O

Theorem 3.6. Let R be a reduced commutative ring that is not an integral domain.
Then AG(R) = I'(R) if and only if |Min(R)| = 2.

Proof. Suppose that AG(R) = I'(R). Since R is a reduced commutative ring that
is not an integral domain, |Min(R)| = 2 by Theorem 3.5. Conversely, suppose that
[Min(R)| = 2. Let P,, P, be the minimal prime ideals of R. Since R is reduced, we
have Z(R) = P,UP, and P, NP, ={0}. Let a, b € Z(R)*. Assume that a,b € P,.
Since P, N P, = {0}, neither a € P, nor b € P,, and thus ab # 0. Since P,P, C P, N
P, = {0}, it follows that anng(ab) = anny(a) = anngx(b) = P,. Thus a — b is not an
edge of AG(R). Similarly, if a, b € P,, then a — b is not an edge of AG(R). If a € P,
and b € P,, then ab =0, and thus a — b is an edge of AG(R). Hence each edge of
AG(R) is an edge of I'(R), and therefore, AG(R) = I'(R). g

Theorem 3.7. Let R be a reduced commutative ring. Then the following statements
are equivalent:

(1) gr(AG(R)) = 4;

(2) AG(R) = I'(R) and gr(I'(R)) = 4;

(3) gr(I(R)) = 4;

(4) T(R) is ring-isomorphic to K, x K,, where each K, is a field with |K;| > 3;

(5) |Min(R)| = 2 and each minimal prime ideal of R has at least three distinct elements;
(6) I'(R) = K™" with m,n > 2;

(7) AG(R) = K™" with m,n > 2.

Proof. (1) = (2). Since gr(AG(R)) =4, AG(R) = I'(R) by Theorem 2.6, and thus
gr((R)) =4. (2) = (3). No comments. (3) & (4) & (5) & (6) are clear by [2,
Theorem 2.2]. (6) = (7). Since (6) implies |Min(R)| =2 by [2, Theorem 2.2], we
conclude that AG(R) = I'(R) by Theorem 3.6, and thus gr(AG(R)) = gr(I'(R)) = 4.
(7) = (1). This is clear since AG(R) is a complete bipartite graph and n, m > 2. O

Theorem 3.8. Let R be a reduced commutative ring that is not an integral domain.
Then the following statements are equivalent:

(1) gr(AG(R)) = oe;

(2) AG(R) =I(R) and gr(AG(R)) = oo;

(3) gr(I(R)) = oo;

(4) T(R) is ring-isomorphic to Z, x K, where K is a field,

(5) |Min(R)| =2 and at least one minimal prime ideal ideal of R has exactly two
distinct elements;,

(6) T(R) = K" for some n > 1;

(7) AG(R) = K" for some n > 1.

Proof. (1) = (2). Since gr(AG(R)) = oo, AG(R) =I'(R) by Theorem 2.6, and
thus gr(I'(R)) = o0. (2) = (3). No comments. (3) & (4) & (5) & (6) are clear by
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[2, Theorem 2.4]. (6) = (7). Since (6) implies |Min(R)| = 2 by [2, Theorem 2.4], we
conclude that AG(R) = I'(R) by Theorem 3.6, and thus gr(AG(R)) = gr(I(R)) = oo.
(7) = (1). It is clear. O

In view of Theorem 3.7 and Theorem 3.8, we have the following result.

Corollary 3.9. Let R be a reduced commutative ring. Then AG(R) = I'(R) if and only
if gr(AG(R)) = gr(I(R)) € {4, oo}.

For the remainder of this section, we study the case when R is nonreduced.

Theorem 3.10. Ler R be a nonreduced commutative ring with |Nil(R)*| > 2 and let
AG \(R) be the (induced) subgraph of AG(R) with vertices Nil(R)*. Then AG y(R) is
complete.

Proof. Suppose there are nonzero distinct elements a, b€ Nil(R) such that
ab#0. Assume that anng(ab) = anng(a) U anngy(b). Hence anng(ab) = anng(a) or
anng(ab) = anngy(b). Without lost of generality, we may assume that anng(ab) =
anng(a). Let n be the least positive integer such that »" = 0. Suppose that ab* #0
for each k, 1 <k <n. Then b"~! € anng(ab)\anng(a), a contradiction. Hence assume
that k, 1 < k < n is the least positive integer such that ab* = 0. Since ab #0, 1 <
k < n. Hence b*~! € anny(ab)\anng(a), a contradiction. Thus a — b is an edge of
AGy(R). O

In view of Theorem 3.10, we have the following result.

Corollary 3.11. Let R be a nonreduced quasi-local commutative ring with maximal
ideal Nil(R) such that |Nil(R)*| > 2. Then AG(R) is complete. In particular, AG(Z,.)
is complete for each n > 3 and if g > 2 is a positive prime number of Z, then AG(Z )
is complete for each n > 2.

The following is an example of a quasi-local commutative ring R with
maximal ideal Nil(R) such that w? =0 for each w € Nil(R), diam(T(R))=2,
diam(AG(R)) =1, and gr(AG(R)) = gr(I'(R)) = 3.

Example 3.12. Let R =7Z,[X,Y]/(X?,Y?), x=X+ (X% Y?)€R, and y=7Y +
(X2, Y?) € R. Then R is a quasi-local commutative ring with maximal ideal Nil(R) =
(x,y)R. It is clear that w?> =0 for each w € Nil(R) and diam(AG(R)) =1 by
Corollary 3.11. Since Nil(R)*> # {0} and xyNil(R) = {0}, we have diam(I'(R)) = 2 by
Lemma 3.1(2). Since x — xy — (xy + x) — x is a cycle of length three in I'(R), we have
gr(AG(R)) = gr(I(R)) = 3.

Theorem 3.13. Let R be a nonreduced commutative ring with |Nil(R)*| > 2, and let
Iy (R) be the induced subgraph of T'(R) with vertices Nil(R)*. Then I'y(R) is complete
if and only if Nil(R)* = {0}.

Proof. 1f Nil(R)?> = {0}, then it is clear that I'y(R) is complete. Hence assume
that Ty (R) is complete. We need only show that w? =0 for each we Nil(R)*.
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Let we Nil(R)* and assume that w? # 0. Let n be the least positive integer such
that w" = 0. Then n > 3. Thus w, w"~! + w are distinct elements of Nil(R)*. Since
w(w" ! +w) = 0 and w" = 0, we have w? = 0, a contradiction. Thus w? = 0 for each
w € Nil(R). O

Theorem 3.14. Let R be a nonreduced commutative ring, and suppose that Nil(R)* #
{0}. Then AG(R) # I'(R) and gr(AG(R)) = 3.

Proof. Since Nil(R)*> # {0}, AG(R) # I'(R) by Theorem 3.10 and Theorem 3.13.
Thus gr(AG(R)) € {3,4} by Corollary 2.11. Let F =Z, x B, where B is Z, or
Z,[X]/(X?). Since Nil(F)* = {0} and Nil(F) # {0}, we have gr(AG(R)) #4 by
Theorem 2.9. Thus gr(AG(R)) = 3. O

Theorem 3.15. Let R be a nonreduced commutative ring such that Z(R) is not an
ideal of R. Then AG(R) # I'(R).

Proof. Since R is nonreduced and Z(R) is not an ideal of R, diam(I'(R)) = 3 by
[10, Corollary 2.5]. Hence AG(R) # I'(R) by Theorem 2.2. O

Theorem 3.16. Let R be a nonreduced commutative ring. Then the following
statements are equivalent:

(1) ¢r(AG(R)) = 4;

(2) AG(R) # I'(R) and gr(AG(R)) = 4;

(3) R is ring-isomorphic to either Z, x Z, or Z, x Z,[X]/(X?);
(4) T(R) =K s

(5) AG(R) = K*3.

Proof. (1) = (2). Suppose AG(R) =I(R). Then gr(I'(R)) =4, and R is ring-
isomorphic to D x B, where D is an integral domain with |[D| >3 and B=17Z,
or Z,[X]/(X?) by [2, Theorem 2.3]. Assume that R is ring-isomorphic to D x Z,.
Since |D| > 3, there is an a € D\{0, 1}. Let x=(0,1),y=(1,2),w=(a,2) € R.
Then x, y, w are distinct elements in Z(R)*, w(xy) = (0, 0), wx # (0,0), and wy #
(0,0). Thus x —w—y—x is a cycle of length three in AG(R) by Lemma 2.3,
a contradiction. Similarly, assume that R is ring-isomorphic to D x Z,[X]/(X?).
Again, since |D| > 3, there is an a € D\{0, 1}. Let x = X + (X?) € Z,[X]/(X?). Then
it is easily verified that (0, 1) — (a, x) — (1, x) — (0, 1) is a cycle of length three in
AG(R), a contradiction. Thus AG(R) # I'(R). (2) = (3). It is clear by Theorem 2.9.
(3) & (4). It is clear by [2, Theorem 2.5]. (4) = (5). Since (4) implies (3) by [2,
Theorem 2.5], it is easily verified that the annihilator graph of the two rings in (3)
is K*3. (4) = (5). Since AG(R) is a K*3, it is clear that gr(AG(R)) = 4. a

We observe that gr(I'(Zg)) = oo, but gr(AG(Zg)) = 3. We have the following
result.

Theorem 3.17. Let R be a commutative ring such that AG(R) # I'(R). Then the
following statements are equivalent:

(1) I'(R) is a star graph,;
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(2) T(R) = K"
(3) AG(R) = K°.

Proof. (1) = (2). Since gr(I'(R)) = o« and I'(R) # AG(R), we have R is non-
reduced by Corollary 3.9 and |Z(R)*| > 3. Since I'(R)) is a star graph, there are two
sets A, B such that Z(R)* = AUB with |A|=1, ANB =0, AB= {0}, and b, b, #
0 for every b,, b, € B. Since |A| =1, we may assume that A = {w} for some w €
Z(R)*. Since each edge of I'(R) is an edge of AG(R) and AG(R) # I'(R), there
are some x,y € B such that x —y is an edge of AG(R) that is not an edge of
I'(R). Since anngz(c) = w for each ¢ € B and anng(xy) # anngx(x) U anng(y), we
have anng(xy) # w. Thus anngz(xy) = B and xy = w. Since A = {xy} and AB =
{0}, we have x(xy) = x>y =0 and y(xy) = y’x=0. We show that B = {x, y}, and
hence |B| =2. Thus assume there is a ¢ € B such that ¢ # x and ¢ # y. Then
we = xyc =0. We show that (xc + xy) # x and (xc + xy) # xy (note that xy = w).
Suppose that (xc + xy) = x. Then y(xc + xy) = yx. But y(xc + xy) = yxc + xy* =
0+ 0 =0 and xy # 0, a contradiction. Hence x # (xc + xy). Since x, ¢ € B, we have
xc # 0 and thus (xc + xy) # xy. Thus x, (xc + xy), xy are distinct elements of Z(R)*.
Since x>y =0 and y € B, either x> =0 or x> = xy or x> =y. Suppose that x*> = y.
Since xy = w # 0, we have xy = x(x?) = x> = w # 0. Since x>y = 0, we have x* =
0. Since x* =0 and x* # 0, we have x?, x*, x> + x* are distinct elements of Z(R)*,
and thus x*> — x> — (x> + x*) — x? is a cycle of length three in I'(R), a contradiction.
Hence, we assume that either x> = 0 or x> = xy = w. In both cases, we have x*c =
0. Since x, (xc + xy), xy are distinct elements of Z(R)* and xy* = yx*> = x’c = 0, we
have x — (xc + xy) — xy — x is a cycle of length three in I'(R), a contradiction. Thus
B = {x,y} and |B| = 2. Hence I'(R) = K"%. (2) = (3). Since each edge of I'(R) is an
edge of AG(R) and I'(R) # AG(R) and I'(R) = K'2, it is clear that AG(R) must be
K3. (3) = (1). Since |Z(R)*| = 3 and I'(R) is connected and AG(R) # I'(R), exactly
one edge of AG(R) is not an edge of I'(R). Thus I'(R) is a star graph. O

Theorem 3.18. Let R be a non-reduced commutative ring with |Z(R)*| > 2. Then the
following statements are equivalent:

(1) AG(R) is a star graph;

(2) gr(AG(R)) = oo;

(3) AG(R) =TI'(R) and gr(I'(R)) = oo;

(4) Nil(R) is a prime ideal of R and either Z(R) = Nil(R) = {0, —w, w} (w # —w)
for some nonzero w € R or Z(R) # Nil(R) and Nil(R) = {0, w} for some nonzero
w € R (and hence wZ(R) = {0});

(5) Either AG(R) = K"! or AG(R) = K'*;

(6) Either I(R) = K"! or I'(R) = K'*.

Proof. (1) = (2). It is clear by the definition of the star graph. (2) = (3).
Since gr(AG(R)) = oo, AG(R) =TI'(R) by Corollary 2.11, and thus gr(I'(R)) = oc.
(3) = (4). Suppose that |Nil(R)*| > 3. Since AG(R) is complete by Theorem 3.10
and |Nil(R)*| > 3, we have gr(AG(R)) = gr(I'(R)) =3, a contradiction. Thus
[Nil(R)*| € {1,2}. Suppose |Nil(R)*| =2. Then Nil(R) = {0, w, —w} (w # —w) for
some nonzero w € R. We show Z(R) = Nil(R). Assume there is a k € Z(R)\Nil(R).
Suppose that wk = 0. Since Nil(R)> = {0}, w —k — (—w) — w is a cycle of length
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three in I'(R), a contradiction. Thus assume that wk # 0. Hence there is an
f € Z(R)*\{w, —w, k}, such that w— f —z is a path of length two in I'(R) by
Theorem 2.2 (note that we are assuming that AG(R) = I'(R)). Thus w — f — (—w) —
w is a cycle of length three in I'(R), a contradiction. Hence if |Nil(R)*| = 2, then
Z(R) = Nil(R). Thus assume that Nil(R) = {0, w} for some nonzero w € R. We show
Nil(R) 1s a prime ideal of R. Since gr(AG(R)) = gr(I'(R)) = oo, we have AG(R) =
I'(R) is a star graph by [2, Theorem 2.5] and Theorem 3.16. Since |Z(R)*| > 2 by
hypothesis and |Nil(R)*| = 1, we have Z(R) # Nil(R). Let ¢ € Z(R)*\Nil(R)*. We
show we = 0. Suppose that we # 0. Since |Nil(R)*| = 1 and wc # 0, we have we =
w. Thus w(c — 1) = 0. Since w+ 1 € U(R) and ¢ € U(R), we have ¢ — 1 # w. Since
I'(R) is a star graph and w(c — 1) = 0 and wc # 0, we have (¢ — 1)j = 0 for each j €
Z(R)*\{c — 1}. In particular, (¢ — 1)[(c — 1) + w] = 0, and therefore w — (¢ — 1) —
(c — 14 w) —w is a cycle of length three in I'(R), a contradiction. Hence wc = 0.
Since wZ(R) = {0} and I'(R) is a star graph, we have Nil(R) = {0, w} is a prime
ideal of R. (4) = (5). Suppose that Nil(R) is a prime ideal of R. If Z(R) = Nil(R)
and |Nil(R)*| = 2, then AG(R) = K"!. Hence, assume that Nil(R) = {0, w} for some
nonzero w € R. We show that Z(R) is an infinite set. Let ¢ € Z(R)\Nil(R) and let
n>m > 1. We show that ¢” # ¢". Suppose that ¢” = ¢". Then ¢"(1 —c¢"™™) = 0.
Since Nil(R) = {0, w} is a prime ideal of R, we have (1 — ¢"™) = w. Since 1 —w €
U(R), we have 1 —w = ¢"" € U(R), a contradiction. Thus ¢” # ¢", and hence Z(R)
is an infinite set. Since Nil(R) = {0, w} is a prime ideal of R and wZ(R) = {0}, we
have AG(R) = K"*. (5) = (6). It is clear. (6) = (1). Since I'(R) is a star graph and
I'(R) # K'?, we have AG(R) = I'(R) by Theorem 3.17, and thus gr(AG(R)) = co.
O

Corollary 3.19 ([3, Theorem 2.13], [2, Remark 2.6(a)], and [4, Theorem 3.9]). Let
R be a nonreduced commutative ring with |Z(R)*| > 2. Then T'(R) is a star graph if
and only if T(R) = K"!, T(R) = K'?, or [(R) = K'*.

Proof. The proof is a direct implication of Theorems 3.17 and 3.18. d

In the following example, we construct two nonreduced commutative rings say
R, and R,, where AG(R,) = K"! and AG(R,) = K">.

Example 3.20.

(1) Let R, = Z,[X]/(X?), and let x= X+ (X?) € R,. Then Z(R,) = Nil(R,)) =
{0, —x, x} and AG(R,) = I'(R,) = K"!. Also note that AG(Z,) = I'(Zy) = K"'.

(2) Let R, = Z,[X, Y]/(XY, X?). Then let x =X+ (XY + X?) and y =Y + (XY +
X?) € R,. Then Z(R,) = (x, y)R,, Nil(R,) = {0, x}, and Z(R,) # Nil(R,). It is
clear that AG(R,) = I(R,) = K.

Remark 3.21. Let R be a nonreduced commutative ring. In view of Theorem 3.15,
Theorem 3.16, and Theorem 3.18, if AG(R) = I'(R), then Z(R) is an ideal of R and
gr(AG(R)) = gr(I'(R)) € {3, oo}. The converse is true if gr(AG(R) = gr(I'(R)) = o
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(see Theorems 3.15 and 3.18). However, if Z(R) is an ideal of R and gr(AG(R)) =
gr(I'(R)) = 3, then it is possible to have all the following cases:

(1) It is possible to have a commutative ring R such that Z(R) is an ideal of R,
Z(R) # Nil(R), AG(R) = I'(R), and gr(AG(R)) = 3. See Example 3.22;

(2) It is possible to have a commutative ring R such that Z(R) is an ideal of R,
Z(R) # Nil(R), Nil(R)> = {0}, AG(R) # I(R), diam(AG(R)) = diam(I'(R)) = 2,
and gr(AG(R)) = gr(I'(R)) = 3. See Example 3.23.

(3) It is possible to have a commutative ring R such that Z(R) is an
ideal of R, Z(R) # Nil(R), Nil(R)* ={0}, AG(R) is a complete graph
(i.e., diam(AG(R)) =1), AG(R) # I'(R), diam(I'(R)) =2, and gr(AG(R)) =
gr(I'(R)) = 3. See Theorem 3.24.

Example 3.22. Let D = Z,[X, Y, W], I = (X2, Y?, XY, XW)D be an ideal of D, and
let R=D/I. Thenlet x=X+1,y=Y + I, and w = W + I be elements of R. Then
Nil(R) = (x, y)R and Z(R) = (x,y, w)R is an ideal of R. By construction, we have
Nil(R)?> = {0}, AG(R) = I'(R), diam(AG(R)) = diam(I'(R)) = 2, and gr(AG(R)) =
gr(I'(R)) = 3 (for example, x — (x + y) — y — x is a cycle of length three).

Example 3.23. Let D =Z,[X,Y, W], I = (X% Y? XY, XW,YW?)D be an ideal
of D, and let R=D/I. Then let x=X+ILy=Y+1I, and w=W+1 be
elements of R. Then Nil(R) = (x,y)R and Z(R) = (x,y,w)R is an ideal of
R. By construction, Nil(R)? = {0}, diam(AG(R)) = diam(T(R)) = 2, gr(AG(R)) =
gr(I(R)) = 3. However, since w® # 0 and y € anngz(w®)\(anngz(w) U anng(w?)), we
have w — w? is an edge of AG(R) that is not an edge of I'(R), and hence AG(R) #
[(R).

Given a commutative ring R and an R-module M, the idealization of M is
the ring R(+)M = R x M with addition defined by (r, m) + (s, n) = (r + s, m + n)
and multiplication defined by (r, m)(s, n) = (rs, rn + sm) for all r,s € R and m, n €
M. Note that {0}(+)M < Nil(R(+)M) since ({0}(+)M)> = {(0,0)}. We have the
following result.

Theorem 3.24. Let D be a principal ideal domain that is not a field with quotient
field K (for example, let D = Z or D = F[X] for some field F), and let Q = (p) be a
nonzero prime ideal of D for some prime (irreducible) element p € D. Set M = K/D,,
and R = D(+)M. Then Z(R) # Nil(R), AG(R) is a complete graph, AG(R) # I'(R),
and gr(AG(R)) = gr(I(R)) = 3.

Proof. By construction of R, Z(R) = Q(+)M, Nil(R) = {0}(+)M, and Nil(R)* =
{(0,0)}. Let x,y be distinct elements of Z(R)*, and suppose that xy # 0. Since
Nil(R)* = {(0, 0)}, to show that AG(R) is complete, we consider two cases. Case I:
assume x € Nil(R)* and y € Z(R)\Nil(R). Then x = (0, % + D) for some nonzero
a € D, ¢ € D\Q, and some positive integer m > 1 such that gcd(a, cp™) =1, and
y = (hp", f) for some positive integer n > 1, a nonzero h € D, and f € M. Since
xy #0, we have n < m. Hence xy = (0, & + Dy) € Nil(R)*. Since (p"™",0) €
anng(xy)\(anng(x) U anng(y)), we have x — y is an edge of AG(R). Case II: assume
that x,y € Z(R)*\Nil(R)*. Then x = (dp“, g) and y = (vp", w) for some positive




Downloaded by [American University of Sharjah], [Ayman Badawi] at 06:32 18 October 2013

ON THE ANNIHILATOR GRAPH OF A COMMUTATIVE RING 121

integers u, r > 1, nonzero d,v € D\Q, and g, w € M. Hence xy = (dvp"*™", dp"w +
vp'g). Since (0, I# + Dy) € anng(xy)\(anng(x) Uanng(y)), we have x —y is an
edge of AG(R). Since (0,  + Dy) — (0, -5 + Dg) — (0, s + Dg) — (0, 1 + Dy) is a
cycle of length three in I'(R), we have gr(AG(R)) = gr(I'(R)) = 3. O

The following example shows that the hypothesis “Q is principal” in the above
theorem is crucial.

Example 3.25. Let D = Z[X] with quotient field K and Q = (2, X)D. Then Q is
a nonprincipal prime ideal of D. Set M = K/D, and R = D(+)M. Then Z(R) =
Q(+)M, Nil(R) = {0}(+)M, and Nil(R)*> = {(0,0)}. Let a = (2,0) and b= (0, + +
D,). Then ab = (0, % + D,) € Nil(R)*. Since anny(ab) = anny(b), we have a — b is
not an edge of AG(R). Thus AG(R) is not a complete graph.
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