

ON THE ANNIHILATOR GRAPH OF A COMMUTATIVE RING

Ayman Badawi

Department of Mathematics and Statistics, American University of Sharjah, Sharjah, UAE

Let R be a commutative ring with nonzero identity, Z(R) be its set of zero-divisors, and if $a \in Z(R)$, then let $ann_R(a) = \{d \in R \mid da = 0\}$. The annihilator graph of R is the (undirected) graph AG(R) with vertices $Z(R)^* = Z(R) \setminus \{0\}$, and two distinct vertices x and y are adjacent if and only if $ann_R(xy) \neq ann_R(x) \cup ann_R(y)$. It follows that each edge (path) of the zero-divisor graph $\Gamma(R)$ is an edge (path) of AG(R). In this article, we study the graph AG(R). For a commutative ring R, we show that AG(R) is connected with diameter at most two and with girth at most four provided that AG(R)has a cycle. Among other things, for a reduced commutative ring R, we show that the annihilator graph AG(R) is identical to the zero-divisor graph $\Gamma(R)$ if and only if R has exactly two minimal prime ideals.

Key Words: Annihilator graph; Annihilator ideal; Zero-divisor graph.

2010 Mathematics Subject Classification: Primary 13A15; Secondary 13B99; 05C99.

1. INTRODUCTION

Let R be a commutative ring with nonzero identity, and let Z(R) be its set of zero-divisors. Recently, there has been considerable attention in the literature to associating graphs with algebraic structures (see [8, 11-14]). Probably the most attention has been to the zero-divisor graph $\Gamma(R)$ for a commutative ring R. The set of vertices of $\Gamma(R)$ is $Z(R)^*$, and two distinct vertices x and y are adjacent if and only if xy = 0. The concept of a zero-divisor graph goes back to Beck [6], who let all elements of R be vertices and was mainly interested in colorings. The zero-divisor graph was introduced by David F. Anderson and Paul S. Livingston in [3], where it was shown, among other things, that $\Gamma(R)$ is connected with diam($\Gamma(R)$) $\in \{0, 1, 2, 3\}$ and gr($\Gamma(R)$) $\in \{3, 4, \infty\}$. For a recent survey article on zero-divisor graphs, see [5]. In this article, we introduce the annihilator graph AG(R)for a commutative ring R. Let $a \in Z(R)$ and let $ann_R(a) = \{r \in R \mid ra = 0\}$. The annihilator graph of R is the (undirected) graph AG(R) with vertices $Z(R)^* =$ $Z(R)\setminus\{0\}$, and two distinct vertices x and y are adjacent if and only if $ann_R(xy) \neq z$ $ann_R(x) \cup ann_R(y)$. It follows that each edge (path) of $\Gamma(R)$ is an edge (path) of AG(R).

Received December 27, 2011; Revised June 14, 2012. Communicated by S. Bazzoni.

Address correspondence to Ayman Badawi, Department of Mathematics and Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, UAE; E-mail: abadawi@aus.edu

In the second section, we show that AG(R) is connected with diameter at most two (Theorem 2.2). If AG(R) is not identical to $\Gamma(R)$, then we show that gr(AG(R))(i.e., the length of a smallest cycle) is at most four (Corollary 2.11). In the third section, we determine when AG(R) is identical to $\Gamma(R)$. For a reduced commutative ring R, we show that AG(R) is identical to $\Gamma(R)$ if and only if R has exactly two distinct minimal prime ideals (Theorem 3.6). Among other things, we determine when AG(R) is a complete graph, a complete bipartite graph, or a star graph.

Let Γ be a (undirected) graph. We say that Γ is *connected* if there is a path between any two distinct vertices. For vertices x and y of Γ , we define d(x, y) to be the length of a shortest path from x to y (d(x, x) = 0 and $d(x, y) = \infty$ if there is no path). Then the *diameter* of Γ is $diam(\Gamma) = \sup\{d(x, y) | x \text{ and } y \text{ are vertices of } \Gamma\}$. The *girth* of Γ , denoted by $gr(\Gamma)$, is the length of a shortest cycle in $\Gamma(gr(\Gamma) = \infty$ if Γ contains no cycles).

A graph Γ is *complete* if any two distinct vertices are adjacent. The complete graph with *n* vertices will be denoted by K^n (we allow *n* to be an infinite cardinal). A *complete bipartite graph* is a graph Γ which may be partitioned into two disjoint nonempty vertex sets *A* and *B* such that two distinct vertices are adjacent if and only if they are in distinct vertex sets. If one of the vertex sets is a singleton, then we call Γ a *star graph*. We denote the complete bipartite graph by $K^{m,n}$, where |A| = m and |B| = n (again, we allow *m* and *n* to be infinite cardinals); so a star graph is a $K^{1,n}$ and $K^{1,\infty}$ denotes a star graph with infinitely many vertices. Finally, let $\overline{K}^{m,3}$ be the graph formed by joining $\Gamma_1 = K^{m,3}$ (= $A \cup B$ with |A| = m and |B| = 3) to the star graph $\Gamma_2 = K^{1,m}$ by identifying the center of Γ_2 and a point of *B*.

Throughout, R will be a commutative ring with nonzero identity, Z(R) its set of zero-divisors, Nil(R) its set of nilpotent elements, U(R) its group of units, T(R) its total quotient ring, and Min(R) its set of minimal prime ideals. For any $A \subseteq R$, let $A^* = A \setminus \{0\}$. We say that R is *reduced* if $Nil(R) = \{0\}$ and that R is *quasi-local* if Rhas a unique maximal ideal. The distance between two distinct vertices a, b of $\Gamma(R)$ is denoted by $d_{\Gamma(R)}(a, b)$. If AG(R) is identical to $\Gamma(R)$, then we write $AG(R) = \Gamma(R)$; otherwise, we write $AG(R) \neq \Gamma(R)$. As usual, \mathbb{Z} and \mathbb{Z}_n will denote the integers and integers modulo n, respectively. Any undefined notation or terminology is standard, as in [9] or [7].

2. BASIC PROPERTIES OF AG(R)

In this section, we show that AG(R) is connected with diameter at most two. If $AG(R) \neq \Gamma(R)$, we show that $gr(AG(R)) \in \{3, 4\}$. If $|Z(R)^*| = 1$ for a commutative ring R, then R is ring-isomorphic to either Z_4 or $Z_2[X]/(X^2)$ and hence $AG(R) = \Gamma(R)$. Since commutative rings with exactly one nonzero zero-divisor are studied in [2, 3, 10], throughout this article we only consider commutative rings with at least two nonzero zero-divisors.

We begin with a lemma containing several useful properties of AG(R).

Lemma 2.1. Let *R* be a commutative ring.

(1) Let x, y be distinct elements of $Z(R)^*$. Then x - y is not an edge of AG(R) if and only if $ann_R(xy) = ann_R(x)$ or $ann_R(xy) = ann_R(y)$.

BADAWI

- (2) If x y is an edge of $\Gamma(R)$ for some distinct $x, y \in Z(R)^*$, then x y is an edge of AG(R). In particular, if P is a path in $\Gamma(R)$, then P is a path in AG(R).
- (3) If x y is not an edge of AG(R) for some distinct $x, y \in Z(R)^*$, then $ann_R(x) \subseteq ann_R(y)$ or $ann_R(y) \subseteq ann_R(x)$.
- (4) If $ann_R(x) \not\subseteq ann_R(y)$ and $ann_R(y) \not\subseteq ann_R(x)$ for some distinct $x, y \in Z(R)^*$, then x y is an edge of AG(R).
- (5) If $d_{\Gamma(R)}(x, y) = 3$ for some distinct $x, y \in Z(R)^*$, then x y is an edge of AG(R).
- (6) If x y is not an edge of AG(R) for some distinct $x, y \in Z(R)^*$, then there is a $w \in Z(R)^* \setminus \{x, y\}$ such that x w y is a path in $\Gamma(R)$, and hence x w y is also a path in AG(R).

Proof. (1) Suppose that x - y is not an edge of AG(R). Then $ann_R(xy) = ann_R(x) \cup ann_R(y)$ by definition. Since $ann_R(xy)$ is a union of two ideals, we have $ann_R(xy) = ann_R(x)$ or $ann_R(xy) = ann_R(y)$. Conversely, suppose that $ann_R(xy) = ann_R(x)$ or $ann_R(xy) = ann_R(y)$. Then $ann_R(xy) = ann_R(x) \cup ann_R(y)$, and thus x - y is not an edge of AG(R).

(2) Suppose that x - y is an edge of $\Gamma(R)$ for some distinct $x, y \in Z(R)^*$. Then xy = 0 and hence $ann_R(xy) = R$. Since $x \neq 0$ and $y \neq 0$, $ann_R(x) \neq R$ and $ann_R(y) \neq R$. Thus x - y is an edge of AG(R). The "in particular" statement is now clear.

(3) Suppose that x - y is not an edge of AG(R) for some distinct $x, y \in Z(R)^*$. Then $ann_R(x) \cup ann_R(y) = ann_R(xy)$. Since $ann_R(xy)$ is a union of two ideals, we have $ann_R(x) \subseteq ann_R(y)$ or $ann_R(y) \subseteq ann_R(x)$.

(4) This statement is now clear by (3).

(5) Suppose that $d_{\Gamma(R)}(x, y) = 3$ for some distinct $x, y \in Z(R)^*$. Then $ann_R(x) \not\subseteq ann_R(y)$ and $ann_R(y) \not\subseteq ann_R(x)$. Hence x - y is an edge of AG(R) by (4).

(6) Suppose that x - y is not an edge of AG(R) for some distinct $x, y \in Z(R)^*$. Then there is a $w \in ann_R(x) \cap ann_R(y)$ such that $w \neq 0$ by (3). Since $xy \neq 0$, we have $w \in Z(R)^* \setminus \{x, y\}$. Hence x - w - y is a path in $\Gamma(R)$, and thus x - w - y is a path in AG(R) by (2).

In view of (6) in the preceding lemma, we have the following result.

Theorem 2.2. Let R be a commutative ring with $|Z(R)^*| \ge 2$. Then AG(R) is connected and diam $(AG(R)) \le 2$.

Lemma 2.3. Let R be a commutative ring, and let x, y be distinct nonzero elements. Suppose that x - y is an edge of AG(R) that is not an edge of $\Gamma(R)$ for some distinct $x, y \in Z(R)^*$. If there is a $w \in ann_R(xy) \setminus \{x, y\}$ such that $wx \neq 0$ and $wy \neq 0$, then x - w - y is a path in AG(R) that is not a path in $\Gamma(R)$, and hence C : x - w - y - x is a cycle in AG(R) of length three and each edge of C is not an edge of $\Gamma(R)$.

Proof. Suppose that x - y is an edge of AG(R) that is not an edge of $\Gamma(R)$. Then $xy \neq 0$. Assume there is a $w \in ann_R(xy) \setminus \{x, y\}$ such that $wx \neq 0$ and $wy \neq 0$. Since $y \in ann_R(xw) \setminus (ann_R(x) \cup ann_R(w))$, we conclude that x - w is an edge of AG(R). Since $x \in ann_R(yw) \setminus (ann_R(y) \cup ann_R(w))$, we conclude that y - w is an edge of

AG(R). Hence x - w - y is a path in AG(R). Since $xw \neq 0$ and $yw \neq 0$, we have x - w - y is not a path in $\Gamma(R)$. It is clear that x - w - y - x is a cycle in AG(R) of length three and each edge of C is not an edge of $\Gamma(R)$.

Theorem 2.4. Let R be a commutative ring. Suppose that x - y is an edge of AG(R) that is not an edge of $\Gamma(R)$ for some distinct $x, y \in Z(R)^*$. If $xy^2 \neq 0$ and $x^2y \neq 0$, then there is a $w \in Z(R)^*$ such that x - w - y is a path in AG(R) that is not a path in $\Gamma(R)$, and hence C : x - w - y - x is a cycle in AG(R) of length three and each edge of C is not an edge of $\Gamma(R)$.

Proof. Suppose that x - y is an edge of AG(R) that is not an edge of $\Gamma(R)$. Then $xy \neq 0$ and there is a $w \in ann_R(xy) \setminus (ann_R(x) \cup ann_R(y))$. We show $w \notin \{x, y\}$. Assume $w \in \{x, y\}$. Then either $x^2y = 0$ or $y^2x = 0$, which is a contradiction. Thus $w \notin \{x, y\}$. Hence x - w - y is the desired path in AG(R) by Lemma 2.3.

Corollary 2.5. Let *R* be a reduced commutative ring. Suppose that x - y is an edge of AG(R) that is not an edge of $\Gamma(R)$ for some distinct $x, y \in Z(R)^*$. Then there is a $w \in ann_R(xy) \setminus \{x, y\}$ such that x - w - y is a path in AG(R) that is not a path in $\Gamma(R)$, and hence C : x - w - y - x is a cycle in AG(R) of length three and each edge of *C* is not an edge of $\Gamma(R)$.

Proof. Suppose that x - y is an edge of AG(R) that is not an edge of $\Gamma(R)$ for some distinct $x, y \in Z(R)^*$. Since R is reduced, we have $(xy)^2 \neq 0$. Hence $xy^2 \neq 0$ and $x^2y \neq 0$, and thus the claim is now clear by Theorem 2.4.

In light of Corollary 2.5, we have the following result.

Theorem 2.6. Let *R* be a reduced commutative ring, and suppose that $AG(R) \neq \Gamma(R)$. Then gr(AG(R)) = 3. Furthermore, there is a cycle *C* of length three in AG(R) such that each edge of *C* is not an edge of $\Gamma(R)$.

In view of Theorem 2.4, the following is an example of a nonreduced commutative ring R where x - y is an edge of AG(R) that is not an edge of $\Gamma(R)$ for some distinct $x, y \in Z(R)^*$, but every path in AG(R) of length two from x to y is also a path in $\Gamma(R)$.

Example 2.7. Let $R = \mathbb{Z}_8$. Then 2 - 6 is an edge of AG(R) that is not an edge of $\Gamma(R)$. Now 2 - 4 - 6 is the only path in AG(R) of length two from 2 to 6 and it is also a path in $\Gamma(R)$. Note that $AG(R) = K^3$, $\Gamma(R) = K^{1,2}$, $gr(\Gamma(R)) = \infty$, gr(AG(R)) = 3, $diam(\Gamma(R)) = 2$, and diam(AG(R)) = 1.

The following is an example of a nonreduced commutative ring R such that $AG(R) \neq \Gamma(R)$ and if x - y is an edge of AG(R) that is not an edge of $\Gamma(R)$ for some distinct $x, y \in Z(R)^*$, then there is no path in AG(R) of length two from x to y.

Example 2.8.

(1) Let $R = \mathbb{Z}_2 \times \mathbb{Z}_4$ and let a = (0, 1), b = (1, 2), and c = (0, 3). Then a - b and c - b are the only two edges of AG(R) that are not edges of $\Gamma(R)$, but there is

no path in AG(R) of length two from *a* to *b* and there is no path in AG(R) of length two from *c* to *b*. Note that $AG(R) = K^{2,3}$, $\Gamma(R) = \overline{K}^{1,3}$, gr(AG(R)) = 4, $gr(\Gamma(R)) = \infty$, diam(AG(R) = 2, and $diam(\Gamma(R)) = 3$.

(2) Let $R = \mathbb{Z}_2 \times \mathbb{Z}_2[X]/(X^2)$. Let $x = X + (X^2) \in \mathbb{Z}_2[X]/(X^2)$, a = (0, 1), b = (1, x), and c = (0, 1 + x). Then a - b and c - b are the only two edges of AG(R) that are not edges of $\Gamma(R)$, but there is no path in AG(R) of length two from a to b and there is no path in AG(R) of length two from c to b. Again, note that $AG(R) = K^{2,3}$, $\Gamma(R) = \overline{K}^{1,3}$, gr(AG(R)) = 4, $gr(\Gamma(R)) = \infty$, diam(AG(R) = 2, and $diam(\Gamma(R)) = 3$.

Theorem 2.9. Let *R* be a commutative ring and suppose that $AG(R) \neq \Gamma(R)$. Then the following statements are equivalent:

- (1) gr(AG(R)) = 4;
- (2) $gr(AG(R)) \neq 3$;
- (3) If x y is an edge of AG(R) that is not an edge of $\Gamma(R)$ for some distinct $x, y \in Z(R)^*$, then there is no path in AG(R) of length two from x to y;
- (4) There are some distinct $x, y \in Z(R)^*$ such that x y is an edge of AG(R) that is not an edge of $\Gamma(R)$ and there is no path in AG(R) of length two from x to y;
- (5) *R* is ring-isomorphic to either $\mathbb{Z}_2 \times \mathbb{Z}_4$ or $\mathbb{Z}_2 \times \mathbb{Z}_2[X]/(X^2)$.

Proof. $(1) \Rightarrow (2)$. No comments.

 $(2) \Rightarrow (3)$. Suppose that x - y is an edge of AG(R) that is not an edge of $\Gamma(R)$ for some distinct $x, y \in Z(R)^*$. Since $gr(AG(R)) \neq 3$, there is no path in AG(R) of length two from x to y.

 $(3) \Rightarrow (4)$. Since $AG(R) \neq \Gamma(R)$ by hypothesis, there are some distinct $x, y \in Z(R)^*$ such that x - y is an edge of AG(R) that is not an edge of $\Gamma(R)$, and hence there is no path in AG(R) of length two from x to y by (3).

 $(4) \Rightarrow (5)$. Suppose there are some distinct $x, y \in Z(R)^*$ such that x - y is an edge of AG(R) that is not an edge of $\Gamma(R)$ and there is no path in AG(R) of length two from x to y. Then $ann_R(x) \cap ann_R(y) = \{0\}$. Since $xy \neq 0$ and $ann_R(x) \cap ann_R(y) = \{0\}$. $ann_R(y) = \{0\}$, by Lemma 2.3 we conclude that $ann_R(xy) = ann_R(x) \cup ann_R(y) \cup$ $\{y\}$ such that $y^2 \neq 0$ or $ann_R(xy) = ann_R(x) \cup ann_R(y) \cup \{x\}$ such that $x^2 \neq 0$ (note that if $\{x, y\} \subseteq ann_R(xy)$, then x - xy - y is a path in AG(R) of length two). Without lost of generality, we may assume that $ann_R(xy) = ann_R(x) \cup ann_R(y) \cup \{y\}$ and $y^2 \neq 0$. Let a be a nonzero element of $ann_R(x)$ and b be a nonzero element of $ann_R(y)$. Since $ann_R(x) \cap ann_R(y) = \{0\}$, we have $a + b \in ann_R(xy) \setminus (ann_R(x) \cup ann_R(y))$ $ann_R(y)$, and hence a + b = y. Thus $|ann_R(x)| = |ann_R(y)| = 2$. Since $xy^2 = 0$, we have $ann_R(x) = \{0, y^2\}$ and $ann_R(y) = \{0, xy\}$. Since $y^2 + xy = y$, we have $(y^2 + y) = \{0, xy\}$. $(xy)^2 = y^2$. Since $xy^3 = 0$ and $xy^2 = x^2y^2 = 0$, we have $(y^2 + xy)^2 = y^2$ implies that $y^4 = y^2$. Since $y^2 \neq 0$ and $y^4 = y^2$, we have y^2 is a nonzero idempotent of *R*. Hence $ann_R(xy) = ann_R(x) \cup ann_R(y) \cup \{y\} = \{0, y^2, xy, y\}$. Thus $ann_R(xy) \subseteq yR$ and since $yR \subseteq ann_R(xy)$, we conclude $ann_R(xy) = yR = \{0, y^2, xy, y\}$. Since $y^2 + xy = y$ and $y^4 = y^2$, we have $(y^2 + xy)^3 = y^3$ and hence $y^3 = y^2$. Thus $y^2 R = y(yR) = \{0, y^2\}$. Since y^2 is a nonzero idempotent of R and y^2R is a ring with two elements, we conclude that $y^2 R$ is ring-isomorphic to \mathbb{Z}_2 . Let $f \in ann_R(y^2)$. Then $y^2 f = y(yf) =$

0, and thus $yf \in ann_R(y)$. Hence either yf = 0 or yf = yx. Suppose yf = 0. Since $ann_R(y) = \{0, xy\}$, either f = 0 or f = xy. Suppose yf = yx. Then y(f - x) = 0, and thus f - x = 0 or f - x = xy. Hence f = x or f = x + xy. It is clear that 0, x, xy, x + xy are distinct elements of R and thus $ann_R(y^2) = \{0, x, xy, x + xy\}$. Since $ann_R(y^2) = (1 - y^2)R$, we have $(1 - y^2)R = \{0, x, xy, x + xy\}$. Since $(1 - y^2)R$ is a ring with four elements, we conclude that $(1 - y^2)R$ is ring-isomorphic to either \mathbb{Z}_4 or $\mathbb{Z}_2 \times \mathbb{Z}_2$ or F_4 or $\mathbb{Z}_2[X]/(X^2)$. Since x - y is an edge of AG(R) that is not an edge of $\Gamma(R)$ and there is no path in AG(R) of length two from x to y by hypothesis, we conclude that R is non-reduced by Corollary 2.5. Since R is ring-isomorphic to either $\mathbb{Z}_2 \times \mathbb{Z}_4$ or $\mathbb{Z}_2 \times \mathbb{Z}_2[X]/(X^2)$.

$$(5) \Rightarrow (1)$$
. See Example 2.8.

Corollary 2.10. Let R be a commutative ring such that $AG(R) \neq \Gamma(R)$, and assume that R is not ring-isomorphic to $\mathbb{Z}_2 \times B$, where $B = \mathbb{Z}_4$ or $B = \mathbb{Z}_2[X]/(X^2)$. If E is an edge of AG(R) that is not an edge of $\Gamma(R)$, then E is an edge of a cycle of length three in AG(R).

Corollary 2.11. Let R be a commutative ring such that $AG(R) \neq \Gamma(R)$. Then $gr(AG(R)) \in \{3, 4\}$.

Proof. This result is a direct implication of Theorem 2.9.

3. WHEN IS AG(R) IDENTICAL TO $\Gamma(R)$?

Let *R* be a commutative ring such that $|Z(R)^*| \ge 2$. Then $diam(\Gamma(R)) \in \{1, 2, 3\}$ by [3, Theorem 2.3]. Hence, if $\Gamma(R) = AG(R)$, then $diam(\Gamma(R)) \in \{1, 2\}$ by Theorem 2.2. We recall the following results.

Lemma 3.1.

- (1) [3, the proof of Theorem 2.8] Let R be a reduced commutative ring that is not an integral domain. Then $\Gamma(R)$ is complete if and only if R is ring-isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2$.
- (2) [10, Theorem 2.6(3)] Let R be a commutative ring. Then $diam(\Gamma(R)) = 2$ if and only if either (i) R is reduced with exactly two minimal primes and at least three nonzero zero divisors, or (ii) Z(R) is an ideal whose square is not {0} and each pair of distinct zero divisors has a nonzero annihilator.

We first study the case when *R* is reduced.

Lemma 3.2. Let *R* be a reduced commutative ring that is not an integral domain, and let $z \in Z(R)^*$. Then:

- (1) $ann_R(z) = ann_R(z^n)$ for each positive integer $n \ge 2$;
- (2) If $c + z \in Z(R)$ for some $c \in ann_R(z) \setminus \{0\}$, then $ann_R(z + c)$ is properly contained in $ann_R(z)$ (i.e., $ann_R(c + z) \subset ann_R(z)$). In particular, if Z(R) is an ideal of Rand $c \in ann_R(z) \setminus \{0\}$, then $ann_R(z + c)$ is properly contained in $ann_R(z)$.

Proof. (1) Let $n \ge 2$. It is clear that $ann_R(z) \subseteq ann_R(z^n)$. Let $f \in ann_R(z^n)$. Since $fz^n = 0$ and R is reduced, we have fz = 0. Thus $ann_R(z^n) = ann_R(z)$.

(2) Let $c \in ann_R(z) \setminus \{0\}$, and suppose hat $c + z \in Z(R)$. Since $z^2 \neq 0$, we have $c + z \neq 0$, and hence $c + z \in Z(R)^*$. Since $c \in ann_R(z)$ and R is reduced, we have $c \notin ann_R(c+z)$. Hence $ann_R(c+z) \neq ann_R(z)$. Since $ann_R(c+z) \subset ann_R(z(c+z)) = ann_R(z^2)$ and $ann_R(z^2) = ann_R(z)$ by (1), it follows that $ann_R(c+z) \subset ann_R(z)$.

Theorem 3.3. Let *R* be a reduced commutative ring that is not an integral domain. Then the following statements are equivalent:

(1) AG(R) is complete;

(2) $\Gamma(R)$ is complete (and hence $AG(R) = \Gamma(R)$);

(3) *R* is ring-isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2$.

Proof. (1) \Rightarrow (2). Let $a \in Z(R)^*$. Suppose that $a^2 \neq a$. Since $ann_R(a^3) = ann_R(a)$ by Lemma 3.2(1) and $a^3 \neq 0$, we have $a - a^2$ is not an edge of AG(R), a contradiction. Thus $a^2 = a$ for each $a \in Z(R)$. Let x, y be distinct elements in $Z(R)^*$. We show that x - y is an edge of $\Gamma(R)$. Suppose that $xy \neq 0$. Since x - y is an edge of AG(R), we have $ann_R(xy) \neq ann_R(x)$, and thus $xy \neq x$. Since $x^2 = x$, we have $ann_R(x(xy)) = ann_R(x^2y) = ann_R(xy)$, and thus x - xy is not an edge of AG(R), a contradiction. Hence xy = 0 and x - y is an edge of $\Gamma(R)$.

- $(2) \Rightarrow (3)$. It follows from Lemma 3.1(1).
- $(3) \Rightarrow (1)$. It is easily verified.

Let *R* be a reduced commutative ring with $|Min(R)| \ge 2$. If Z(R) is an ideal of *R*, then Min(R) must be infinite, since $Z(R) = \bigcup \{Q \mid Q \in Min(R)\}$. For the construction of a reduced commutative ring *R* with infinitely many minimal prime ideals such that Z(R) is an ideal of *R*, see [10, Section 5 (Examples)] and [1, Example 3.13].

Theorem 3.4. Let R be a reduced commutative ring that is not an integral domain, and assume that Z(R) is an ideal of R. Then $AG(R) \neq \Gamma(R)$ and gr(AG(R)) = 3.

Proof. Let $z \in Z(R)^*$, $c \in ann_R(z) \setminus \{0\}$, and $m \in ann_R(c+z) \setminus \{0\}$. Then $m \in ann_R(c+z) \subset ann_R(z)$ by Lemma 3.2(2), and thus mc = 0. Since $c^2 \neq 0$, we have $m \neq c$, and hence $c + z \neq m + z$. Since $\{c, m\} \subseteq ann_R(z)$ and $z^2 \neq 0$, we have c + z and m + z are nonzero distinct elements of Z(R). Since $(m + z)(c + z) = z^2 \neq 0$, we have (c + z) - (m + z) is not an edge of $\Gamma(R)$. Since $c^2 \neq 0$ and $m^2 \neq 0$, it follows that $(c + m) \in ann_R(z^2) \setminus (ann_R(c + z) \cup ann_R(m + z))$, and thus (c + z) - (m + z) is an edge of $\Lambda G(R)$. Since (c + z) - (m + z) is an edge of AG(R) that is not an edge of $\Gamma(R)$, we have $AG(R) \neq \Gamma(R)$. Since R is reduced and $AG(R) \neq \Gamma(R)$, we have gr(AG(R)) = 3 by Theorem 2.6.

Theorem 3.5. Let *R* be a reduced commutative ring with $|Min(R)| \ge 3$ (possibly Min(R) is infinite). Then $AG(R) \ne \Gamma(R)$ and gr(AG(R)) = 3.

Proof. If Z(R) is an ideal of R, then $AG(R) \neq \Gamma(R)$ by Theorem 3.4. Hence assume that Z(R) is not an ideal of R. Since $|Min(R)| \ge 3$, we have $diam(\Gamma(R)) = 3$ by Lemma 3.1(2), and thus $AG(R) \neq \Gamma(R)$ by Theorem 2.2. Since R is reduced and $AG(R) \neq \Gamma(R)$, we have gr(AG(R)) = 3 by Theorem 2.6.

Theorem 3.6. Let R be a reduced commutative ring that is not an integral domain. Then $AG(R) = \Gamma(R)$ if and only if |Min(R)| = 2.

Proof. Suppose that $AG(R) = \Gamma(R)$. Since R is a reduced commutative ring that is not an integral domain, |Min(R)| = 2 by Theorem 3.5. Conversely, suppose that |Min(R)| = 2. Let P_1 , P_2 be the minimal prime ideals of R. Since R is reduced, we have $Z(R) = P_1 \cup P_2$ and $P_1 \cap P_2 = \{0\}$. Let $a, b \in Z(R)^*$. Assume that $a, b \in P_1$. Since $P_1 \cap P_2 = \{0\}$, neither $a \in P_2$ nor $b \in P_2$, and thus $ab \neq 0$. Since $P_1P_2 \subseteq P_1 \cap$ $P_2 = \{0\}$, it follows that $ann_R(ab) = ann_R(a) = ann_R(b) = P_2$. Thus a - b is not an edge of AG(R). Similarly, if $a, b \in P_2$, then a - b is not an edge of AG(R). If $a \in P_1$ and $b \in P_2$, then ab = 0, and thus a - b is an edge of AG(R). Hence each edge of AG(R) is an edge of $\Gamma(R)$, and therefore, $AG(R) = \Gamma(R)$.

Theorem 3.7. Let *R* be a reduced commutative ring. Then the following statements are equivalent:

(1) gr(AG(R)) = 4;

(2) $AG(R) = \Gamma(R)$ and $gr(\Gamma(R)) = 4$;

(3) $gr(\Gamma(R)) = 4;$

- (4) T(R) is ring-isomorphic to $K_1 \times K_2$, where each K_i is a field with $|K_i| \ge 3$;
- (5) |Min(R)| = 2 and each minimal prime ideal of R has at least three distinct elements;
- (6) $\Gamma(R) = K^{m,n}$ with $m, n \ge 2$;
- (7) $AG(R) = K^{m,n}$ with $m, n \ge 2$.

Proof. (1) \Rightarrow (2). Since gr(AG(R)) = 4, $AG(R) = \Gamma(R)$ by Theorem 2.6, and thus $gr(\Gamma(R)) = 4$. (2) \Rightarrow (3). No comments. (3) \Leftrightarrow (4) \Leftrightarrow (5) \Leftrightarrow (6) are clear by [2, Theorem 2.2]. (6) \Rightarrow (7). Since (6) implies |Min(R)| = 2 by [2, Theorem 2.2], we conclude that $AG(R) = \Gamma(R)$ by Theorem 3.6, and thus $gr(AG(R)) = gr(\Gamma(R)) = 4$. (7) \Rightarrow (1). This is clear since AG(R) is a complete bipartite graph and $n, m \ge 2$. \Box

Theorem 3.8. Let *R* be a reduced commutative ring that is not an integral domain. Then the following statements are equivalent:

(1) $gr(AG(R)) = \infty;$

- (2) $AG(R) = \Gamma(R)$ and $gr(AG(R)) = \infty$;
- (3) $gr(\Gamma(R)) = \infty;$
- (4) T(R) is ring-isomorphic to $Z_2 \times K$, where K is a field;
- (5) |Min(R)| = 2 and at least one minimal prime ideal ideal of R has exactly two distinct elements;
- (6) $\Gamma(R) = K^{1,n}$ for some $n \ge 1$;
- (7) $AG(R) = K^{1,n}$ for some $n \ge 1$.

Proof. (1) \Rightarrow (2). Since $gr(AG(R)) = \infty$, $AG(R) = \Gamma(R)$ by Theorem 2.6, and thus $gr(\Gamma(R)) = \infty$. (2) \Rightarrow (3). No comments. (3) \Leftrightarrow (4) \Leftrightarrow (5) \Leftrightarrow (6) are clear by

BADAWI

[2, Theorem 2.4]. (6) \Rightarrow (7). Since (6) implies |Min(R)| = 2 by [2, Theorem 2.4], we conclude that $AG(R) = \Gamma(R)$ by Theorem 3.6, and thus $gr(AG(R)) = gr(\Gamma(R)) = \infty$. (7) \Rightarrow (1). It is clear.

In view of Theorem 3.7 and Theorem 3.8, we have the following result.

Corollary 3.9. Let *R* be a reduced commutative ring. Then $AG(R) = \Gamma(R)$ if and only if $gr(AG(R)) = gr(\Gamma(R)) \in \{4, \infty\}$.

For the remainder of this section, we study the case when R is nonreduced.

Theorem 3.10. Let R be a nonreduced commutative ring with $|Nil(R)^*| \ge 2$ and let $AG_N(R)$ be the (induced) subgraph of AG(R) with vertices $Nil(R)^*$. Then $AG_N(R)$ is complete.

Proof. Suppose there are nonzero distinct elements $a, b \in Nil(R)$ such that $ab \neq 0$. Assume that $ann_R(ab) = ann_R(a) \cup ann_R(b)$. Hence $ann_R(ab) = ann_R(a)$ or $ann_R(ab) = ann_R(b)$. Without lost of generality, we may assume that $ann_R(ab) = ann_R(a)$. Let *n* be the least positive integer such that $b^n = 0$. Suppose that $ab^k \neq 0$ for each k, $1 \le k < n$. Then $b^{n-1} \in ann_R(ab) \setminus ann_R(a)$, a contradiction. Hence assume that $k, 1 \le k < n$ is the least positive integer such that $ab^k = 0$. Since $ab \neq 0, 1 < k < n$. Hence $b^{k-1} \in ann_R(ab) \setminus ann_R(a)$, a contradiction. Thus a - b is an edge of $AG_N(R)$.

In view of Theorem 3.10, we have the following result.

Corollary 3.11. Let *R* be a nonreduced quasi-local commutative ring with maximal ideal Nil(*R*) such that $|Nil(R)^*| \ge 2$. Then AG(*R*) is complete. In particular, AG(\mathbb{Z}_{2^n}) is complete for each $n \ge 3$ and if q > 2 is a positive prime number of \mathbb{Z} , then AG(\mathbb{Z}_{q^n}) is complete for each $n \ge 2$.

The following is an example of a quasi-local commutative ring R with maximal ideal Nil(R) such that $w^2 = 0$ for each $w \in Nil(R)$, $diam(\Gamma(R)) = 2$, diam(AG(R)) = 1, and $gr(AG(R)) = gr(\Gamma(R)) = 3$.

Example 3.12. Let $R = \mathbb{Z}_2[X, Y]/(X^2, Y^2)$, $x = X + (X^2, Y^2) \in R$, and $y = Y + (X^2, Y^2) \in R$. Then *R* is a quasi-local commutative ring with maximal ideal Nil(R) = (x, y)R. It is clear that $w^2 = 0$ for each $w \in Nil(R)$ and diam(AG(R)) = 1 by Corollary 3.11. Since $Nil(R)^2 \neq \{0\}$ and $xyNil(R) = \{0\}$, we have $diam(\Gamma(R)) = 2$ by Lemma 3.1(2). Since x - xy - (xy + x) - x is a cycle of length three in $\Gamma(R)$, we have $gr(AG(R)) = gr(\Gamma(R)) = 3$.

Theorem 3.13. Let R be a nonreduced commutative ring with $|Nil(R)^*| \ge 2$, and let $\Gamma_N(R)$ be the induced subgraph of $\Gamma(R)$ with vertices $Nil(R)^*$. Then $\Gamma_N(R)$ is complete if and only if $Nil(R)^2 = \{0\}$.

Proof. If $Nil(R)^2 = \{0\}$, then it is clear that $\Gamma_N(R)$ is complete. Hence assume that $\Gamma_N(R)$ is complete. We need only show that $w^2 = 0$ for each $w \in Nil(R)^*$.

Let $w \in Nil(R)^*$ and assume that $w^2 \neq 0$. Let *n* be the least positive integer such that $w^n = 0$. Then $n \ge 3$. Thus $w, w^{n-1} + w$ are distinct elements of $Nil(R)^*$. Since $w(w^{n-1} + w) = 0$ and $w^n = 0$, we have $w^2 = 0$, a contradiction. Thus $w^2 = 0$ for each $w \in Nil(R)$.

Theorem 3.14. Let *R* be a nonreduced commutative ring, and suppose that $Nil(R)^2 \neq \{0\}$. Then $AG(R) \neq \Gamma(R)$ and gr(AG(R)) = 3.

Proof. Since $Nil(R)^2 \neq \{0\}$, $AG(R) \neq \Gamma(R)$ by Theorem 3.10 and Theorem 3.13. Thus $gr(AG(R)) \in \{3, 4\}$ by Corollary 2.11. Let $F = \mathbb{Z}_2 \times B$, where B is \mathbb{Z}_4 or $\mathbb{Z}_2[X]/(X^2)$. Since $Nil(F)^2 = \{0\}$ and $Nil(F) \neq \{0\}$, we have $gr(AG(R)) \neq 4$ by Theorem 2.9. Thus gr(AG(R)) = 3.

Theorem 3.15. Let R be a nonreduced commutative ring such that Z(R) is not an ideal of R. Then $AG(R) \neq \Gamma(R)$.

Proof. Since R is nonreduced and Z(R) is not an ideal of R, $diam(\Gamma(R)) = 3$ by [10, Corollary 2.5]. Hence $AG(R) \neq \Gamma(R)$ by Theorem 2.2.

Theorem 3.16. Let *R* be a nonreduced commutative ring. Then the following statements are equivalent:

gr(AG(R)) = 4;
AG(R) ≠ Γ(R) and gr(AG(R)) = 4;
R is ring-isomorphic to either Z₂ × Z₄ or Z₂ × Z₂[X]/(X²);
Γ(R) = K^{1,3};
AG(R) = K^{2,3}.

Proof. (1) \Rightarrow (2). Suppose $AG(R) = \Gamma(R)$. Then $gr(\Gamma(R)) = 4$, and R is ringisomorphic to $D \times B$, where D is an integral domain with $|D| \ge 3$ and $B = \mathbb{Z}_4$ or $\mathbb{Z}_2[X]/(X^2)$ by [2, Theorem 2.3]. Assume that R is ring-isomorphic to $D \times \mathbb{Z}_4$. Since $|D| \ge 3$, there is an $a \in D \setminus \{0, 1\}$. Let $x = (0, 1), y = (1, 2), w = (a, 2) \in R$. Then x, y, w are distinct elements in $Z(R)^*$, $w(xy) = (0, 0), wx \ne (0, 0)$, and $wy \ne (0, 0)$. Thus x - w - y - x is a cycle of length three in AG(R) by Lemma 2.3, a contradiction. Similarly, assume that R is ring-isomorphic to $D \times \mathbb{Z}_2[X]/(X^2)$. Again, since $|D| \ge 3$, there is an $a \in D \setminus \{0, 1\}$. Let $x = X + (X^2) \in \mathbb{Z}_2[X]/(X^2)$. Then it is easily verified that (0, 1) - (a, x) - (1, x) - (0, 1) is a cycle of length three in AG(R), a contradiction. Thus $AG(R) \ne \Gamma(R)$. (2) \Rightarrow (3). It is clear by Theorem 2.9. (3) \Leftrightarrow (4). It is clear by [2, Theorem 2.5]. (4) \Rightarrow (5). Since (4) implies (3) by [2, Theorem 2.5], it is easily verified that the annihilator graph of the two rings in (3) is $K^{2,3}$. (4) \Rightarrow (5). Since AG(R) is a $K^{2,3}$, it is clear that gr(AG(R)) = 4.

We observe that $gr(\Gamma(\mathbb{Z}_8)) = \infty$, but $gr(AG(\mathbb{Z}_8)) = 3$. We have the following result.

Theorem 3.17. Let R be a commutative ring such that $AG(R) \neq \Gamma(R)$. Then the following statements are equivalent:

(1) $\Gamma(R)$ is a star graph;

(2) $\Gamma(R) = K^{1,2};$ (3) $AG(R) = K^3.$

Proof. (1) \Rightarrow (2). Since $gr(\Gamma(R)) = \infty$ and $\Gamma(R) \neq AG(R)$, we have R is nonreduced by Corollary 3.9 and $|Z(R)^*| \ge 3$. Since $\Gamma(R)$ is a star graph, there are two sets A, B such that $Z(R)^* = A \cup B$ with |A| = 1, $A \cap B = \emptyset$, $AB = \{0\}$, and $b_1 b_2 \neq A$ 0 for every $b_1, b_2 \in B$. Since |A| = 1, we may assume that $A = \{w\}$ for some $w \in A$ $Z(R)^*$. Since each edge of $\Gamma(R)$ is an edge of AG(R) and $AG(R) \neq \Gamma(R)$, there are some $x, y \in B$ such that x - y is an edge of AG(R) that is not an edge of $\Gamma(R)$. Since $ann_R(c) = w$ for each $c \in B$ and $ann_R(xy) \neq ann_R(x) \cup ann_R(y)$, we have $ann_{R}(xy) \neq w$. Thus $ann_{R}(xy) = B$ and xy = w. Since $A = \{xy\}$ and $AB = \{xy\}$ {0}, we have $x(xy) = x^2y = 0$ and $y(xy) = y^2x = 0$. We show that $B = \{x, y\}$, and hence |B| = 2. Thus assume there is a $c \in B$ such that $c \neq x$ and $c \neq y$. Then wc = xyc = 0. We show that $(xc + xy) \neq x$ and $(xc + xy) \neq xy$ (note that xy = w). Suppose that (xc + xy) = x. Then y(xc + xy) = yx. But $y(xc + xy) = yxc + xy^2 = yxc + xy^2$ 0 + 0 = 0 and $xy \neq 0$, a contradiction. Hence $x \neq (xc + xy)$. Since $x, c \in B$, we have $xc \neq 0$ and thus $(xc + xy) \neq xy$. Thus x, (xc + xy), xy are distinct elements of $Z(R)^*$. Since $x^2y = 0$ and $y \in B$, either $x^2 = 0$ or $x^2 = xy$ or $x^2 = y$. Suppose that $x^2 = y$. Since $xy = w \neq 0$, we have $xy = x(x^2) = x^3 = w \neq 0$. Since $x^2y = 0$, we have $x^4 = x^4$ 0. Since $x^4 = 0$ and $x^3 \neq 0$, we have x^2 , x^3 , $x^2 + x^3$ are distinct elements of $Z(R)^*$, and thus $x^2 - x^3 - (x^2 + x^3) - x^2$ is a cycle of length three in $\Gamma(R)$, a contradiction. Hence, we assume that either $x^2 = 0$ or $x^2 = xy = w$. In both cases, we have $x^2c = w^2$ 0. Since x, (xc + xy), xy are distinct elements of $Z(R)^*$ and $xy^2 = yx^2 = x^2c = 0$, we have x - (xc + xy) - xy - x is a cycle of length three in $\Gamma(R)$, a contradiction. Thus $B = \{x, y\}$ and |B| = 2. Hence $\Gamma(R) = K^{1,2}$. (2) \Rightarrow (3). Since each edge of $\Gamma(R)$ is an edge of AG(R) and $\Gamma(R) \neq AG(R)$ and $\Gamma(R) = K^{1,2}$, it is clear that AG(R) must be K^3 . (3) \Rightarrow (1). Since $|Z(R)^*| = 3$ and $\Gamma(R)$ is connected and $AG(R) \neq \Gamma(R)$, exactly one edge of AG(R) is not an edge of $\Gamma(R)$. Thus $\Gamma(R)$ is a star graph.

Theorem 3.18. Let R be a non-reduced commutative ring with $|Z(R)^*| \ge 2$. Then the following statements are equivalent:

- (1) AG(R) is a star graph;
- (2) $gr(AG(R)) = \infty;$
- (3) $AG(R) = \Gamma(R)$ and $gr(\Gamma(R)) = \infty$;
- (4) Nil(R) is a prime ideal of R and either $Z(R) = Nil(R) = \{0, -w, w\}$ $(w \neq -w)$ for some nonzero $w \in R$ or $Z(R) \neq Nil(R)$ and $Nil(R) = \{0, w\}$ for some nonzero $w \in R$ (and hence $wZ(R) = \{0\}$);
- (5) *Either* $AG(R) = K^{1,1}$ *or* $AG(R) = K^{1,\infty}$;
- (6) Either $\Gamma(R) = K^{1,1}$ or $\Gamma(R) = K^{1,\infty}$.

Proof. (1) \Rightarrow (2). It is clear by the definition of the star graph. (2) \Rightarrow (3). Since $gr(AG(R)) = \infty$, $AG(R) = \Gamma(R)$ by Corollary 2.11, and thus $gr(\Gamma(R)) = \infty$. (3) \Rightarrow (4). Suppose that $|Nil(R)^*| \ge 3$. Since $AG_N(R)$ is complete by Theorem 3.10 and $|Nil(R)^*| \ge 3$, we have $gr(AG(R)) = gr(\Gamma(R)) = 3$, a contradiction. Thus $|Nil(R)^*| \in \{1, 2\}$. Suppose $|Nil(R)^*| = 2$. Then $Nil(R) = \{0, w, -w\}$ ($w \ne -w$) for some nonzero $w \in R$. We show Z(R) = Nil(R). Assume there is a $k \in Z(R) \setminus Nil(R)$. Suppose that wk = 0. Since $Nil(R)^2 = \{0\}$, w - k - (-w) - w is a cycle of length three in $\Gamma(R)$, a contradiction. Thus assume that $wk \neq 0$. Hence there is an $f \in Z(R)^* \setminus \{w, -w, k\}$, such that w - f - z is a path of length two in $\Gamma(R)$ by Theorem 2.2 (note that we are assuming that $AG(R) = \Gamma(R)$). Thus w - f - (-w) - G(R)w is a cycle of length three in $\Gamma(R)$, a contradiction. Hence if $|Nil(R)^*| = 2$, then Z(R) = Nil(R). Thus assume that $Nil(R) = \{0, w\}$ for some nonzero $w \in R$. We show Nil(R) is a prime ideal of R. Since $gr(AG(R)) = gr(\Gamma(R)) = \infty$, we have AG(R) = $\Gamma(R)$ is a star graph by [2, Theorem 2.5] and Theorem 3.16. Since $|Z(R)^*| \ge 2$ by hypothesis and $|Nil(R)^*| = 1$, we have $Z(R) \neq Nil(R)$. Let $c \in Z(R)^* \setminus Nil(R)^*$. We show wc = 0. Suppose that $wc \neq 0$. Since $|Nil(R)^*| = 1$ and $wc \neq 0$, we have wc =w. Thus w(c-1) = 0. Since $w + 1 \in U(R)$ and $c \notin U(R)$, we have $c - 1 \neq w$. Since $\Gamma(R)$ is a star graph and w(c-1) = 0 and $wc \neq 0$, we have (c-1)j = 0 for each $j \in C$ $Z(R)^* \setminus \{c-1\}$. In particular, (c-1)[(c-1)+w] = 0, and therefore w - (c-1) - c(c-1+w)-w is a cycle of length three in $\Gamma(R)$, a contradiction. Hence wc = 0. Since $wZ(R) = \{0\}$ and $\Gamma(R)$ is a star graph, we have $Nil(R) = \{0, w\}$ is a prime ideal of R. (4) \Rightarrow (5). Suppose that Nil(R) is a prime ideal of R. If Z(R) = Nil(R)and $|Nil(R)^*| = 2$, then $AG(R) = K^{1,1}$. Hence, assume that $Nil(R) = \{0, w\}$ for some nonzero $w \in R$. We show that Z(R) is an infinite set. Let $c \in Z(R) \setminus Nil(R)$ and let $n > m \ge 1$. We show that $c^m \ne c^n$. Suppose that $c^m = c^n$. Then $c^m(1 - c^{n-m}) = 0$. Since $Nil(R) = \{0, w\}$ is a prime ideal of R, we have $(1 - c^{n-m}) = w$. Since $1 - w \in$ U(R), we have $1 - w = c^{n-m} \in U(R)$, a contradiction. Thus $c^m \neq c^n$, and hence Z(R)is an infinite set. Since $Nil(R) = \{0, w\}$ is a prime ideal of R and $wZ(R) = \{0\}$, we have $AG(R) = K^{1,\infty}$. (5) \Rightarrow (6). It is clear. (6) \Rightarrow (1). Since $\Gamma(R)$ is a star graph and $\Gamma(R) \neq K^{1,2}$, we have $AG(R) = \Gamma(R)$ by Theorem 3.17, and thus $gr(AG(R)) = \infty$.

Corollary 3.19 ([3, Theorem 2.13], [2, Remark 2.6(a)], and [4, Theorem 3.9]). Let *R* be a nonreduced commutative ring with $|Z(R)^*| \ge 2$. Then $\Gamma(R)$ is a star graph if and only if $\Gamma(R) = K^{1,1}$, $\Gamma(R) = K^{1,2}$, or $\Gamma(R) = K^{1,\infty}$.

Proof. The proof is a direct implication of Theorems 3.17 and 3.18. \Box

In the following example, we construct two nonreduced commutative rings say R_1 and R_2 , where $AG(R_1) = K^{1,1}$ and $AG(R_2) = K^{1,\infty}$.

Example 3.20.

- (1) Let $R_1 = \mathbb{Z}_3[X]/(X^2)$, and let $x = X + (X^2) \in R_1$. Then $Z(R_1) = Nil(R_1) = \{0, -x, x\}$ and $AG(R_1) = \Gamma(R_1) = K^{1,1}$. Also note that $AG(\mathbb{Z}_9) = \Gamma(\mathbb{Z}_9) = K^{1,1}$.
- (2) Let $R_2 = \mathbb{Z}_2[X, Y]/(XY, X^2)$. Then let $x = X + (XY + X^2)$ and $y = Y + (XY + X^2) \in R_2$. Then $Z(R_2) = (x, y)R_2$, $Nil(R_2) = \{0, x\}$, and $Z(R_2) \neq Nil(R_2)$. It is clear that $AG(R_2) = \Gamma(R_2) = K^{1,\infty}$.

Remark 3.21. Let *R* be a nonreduced commutative ring. In view of Theorem 3.15, Theorem 3.16, and Theorem 3.18, if $AG(R) = \Gamma(R)$, then Z(R) is an ideal of *R* and $gr(AG(R)) = gr(\Gamma(R)) \in \{3, \infty\}$. The converse is true if $gr(AG(R) = gr(\Gamma(R)) = \infty$

(see Theorems 3.15 and 3.18). However, if Z(R) is an ideal of R and $gr(AG(R)) = gr(\Gamma(R)) = 3$, then it is possible to have all the following cases:

- (1) It is possible to have a commutative ring R such that Z(R) is an ideal of R, $Z(R) \neq Nil(R)$, $AG(R) = \Gamma(R)$, and gr(AG(R)) = 3. See Example 3.22;
- (2) It is possible to have a commutative ring R such that Z(R) is an ideal of R, $Z(R) \neq Nil(R), Nil(R)^2 = \{0\}, AG(R) \neq \Gamma(R), diam(AG(R)) = diam(\Gamma(R)) = 2,$ and $gr(AG(R)) = gr(\Gamma(R)) = 3$. See Example 3.23.
- (3) It is possible to have a commutative ring R such that Z(R) is an ideal of R, $Z(R) \neq Nil(R)$, $Nil(R)^2 = \{0\}$, AG(R) is a complete graph (i.e., diam(AG(R)) = 1), $AG(R) \neq \Gamma(R)$, $diam(\Gamma(R)) = 2$, and $gr(AG(R)) = gr(\Gamma(R)) = 3$. See Theorem 3.24.

Example 3.22. Let $D = \mathbb{Z}_2[X, Y, W]$, $I = (X^2, Y^2, XY, XW)D$ be an ideal of D, and let R = D/I. Then let x = X + I, y = Y + I, and w = W + I be elements of R. Then Nil(R) = (x, y)R and Z(R) = (x, y, w)R is an ideal of R. By construction, we have $Nil(R)^2 = \{0\}$, $AG(R) = \Gamma(R)$, $diam(AG(R)) = diam(\Gamma(R)) = 2$, and $gr(AG(R)) = gr(\Gamma(R)) = 3$ (for example, x - (x + y) - y - x is a cycle of length three).

Example 3.23. Let $D = \mathbb{Z}_2[X, Y, W]$, $I = (X^2, Y^2, XY, XW, YW^3)D$ be an ideal of D, and let R = D/I. Then let x = X + I, y = Y + I, and w = W + I be elements of R. Then Nil(R) = (x, y)R and Z(R) = (x, y, w)R is an ideal of R. By construction, $Nil(R)^2 = \{0\}$, $diam(AG(R)) = diam(\Gamma(R)) = 2$, $gr(AG(R)) = gr(\Gamma(R)) = 3$. However, since $w^3 \neq 0$ and $y \in ann_R(w^3) \setminus (ann_R(w) \cup ann_R(w^2))$, we have $w - w^2$ is an edge of AG(R) that is not an edge of $\Gamma(R)$, and hence $AG(R) \neq \Gamma(R)$.

Given a commutative ring R and an R-module M, the *idealization* of M is the ring $R(+)M = R \times M$ with addition defined by (r, m) + (s, n) = (r + s, m + n)and multiplication defined by (r, m)(s, n) = (rs, rn + sm) for all $r, s \in R$ and $m, n \in$ M. Note that $\{0\}(+)M \subseteq Nil(R(+)M)$ since $(\{0\}(+)M)^2 = \{(0, 0)\}$. We have the following result.

Theorem 3.24. Let *D* be a principal ideal domain that is not a field with quotient field *K* (for example, let $D = \mathbb{Z}$ or D = F[X] for some field *F*), and let Q = (p) be a nonzero prime ideal of *D* for some prime (irreducible) element $p \in D$. Set $M = K/D_Q$ and R = D(+)M. Then $Z(R) \neq Nil(R)$, AG(R) is a complete graph, $AG(R) \neq \Gamma(R)$, and $gr(AG(R)) = gr(\Gamma(R)) = 3$.

Proof. By construction of R, Z(R) = Q(+)M, $Nil(R) = \{0\}(+)M$, and $Nil(R)^2 = \{(0,0)\}$. Let x, y be distinct elements of $Z(R)^*$, and suppose that $xy \neq 0$. Since $Nil(R)^2 = \{(0,0)\}$, to show that AG(R) is complete, we consider two cases. Case I: assume $x \in Nil(R)^*$ and $y \in Z(R) \setminus Nil(R)$. Then $x = (0, \frac{a}{cp^m} + D_Q)$ for some nonzero $a \in D$, $c \in D \setminus Q$, and some positive integer $m \ge 1$ such that $gcd(a, cp^m) = 1$, and $y = (hp^n, f)$ for some positive integer $n \ge 1$, a nonzero $h \in D$, and $f \in M$. Since $xy \neq 0$, we have n < m. Hence $xy = (0, \frac{ha}{cp^{m-n}} + D_Q) \in Nil(R)^*$. Since $(p^{m-n}, 0) \in ann_R(xy) \setminus (ann_R(x) \cup ann_R(y))$, we have x - y is an edge of AG(R). Case II: assume that $x, y \in Z(R)^* \setminus Nil(R)^*$. Then $x = (dp^u, g)$ and $y = (vp^r, w)$ for some positive

integers $u, r \ge 1$, nonzero $d, v \in D \setminus Q$, and $g, w \in M$. Hence $xy = (dvp^{u+r}, dp^uw + vp^rg)$. Since $(0, \frac{1}{p^{u+r}} + D_Q) \in ann_R(xy) \setminus (ann_R(x) \cup ann_R(y))$, we have x - y is an edge of AG(R). Since $(0, \frac{1}{p} + D_Q) - (0, \frac{1}{p^2} + D_Q) - (0, \frac{1}{p^3} + D_Q) - (0, \frac{1}{p} + D_Q)$ is a cycle of length three in $\Gamma(R)$, we have $gr(AG(R)) = gr(\Gamma(R)) = 3$.

The following example shows that the hypothesis "Q is principal" in the above theorem is crucial.

Example 3.25. Let $D = \mathbb{Z}[X]$ with quotient field K and Q = (2, X)D. Then Q is a nonprincipal prime ideal of D. Set $M = K/D_Q$ and R = D(+)M. Then Z(R) = Q(+)M, $Nil(R) = \{0\}(+)M$, and $Nil(R)^2 = \{(0, 0)\}$. Let a = (2, 0) and $b = (0, \frac{1}{X} + D_Q)$. Then $ab = (0, \frac{2}{X} + D_Q) \in Nil(R)^*$. Since $ann_R(ab) = ann_R(b)$, we have a - b is not an edge of AG(R). Thus AG(R) is not a complete graph.

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to the referee for his (her) great effort in proofreading the manuscript and for the several comments.

REFERENCES

- Anderson, D. F. (2008). On the diameter and girth of a zero-divisor graph, II. *Houston J. Math.* 34:361–371.
- [2] Anderson, D. F., Mulay, S. B. (2007). On the diameter and girth of a zero-divisor graph. J. Pure Appl. Algebra 210(2):543–550.
- [3] Anderson, D. F., Livingston, P. S. (1999). The zero-divisor graph of a commutative ring. J. Algebra 217:434–447.
- [4] Anderson, D. F., Levy, R., Shapiro, J. (2003). Zero-divisor graphs, von Neumann regular rings, and boolean algebras. *JPAA* 180:221–241.
- [5] Anderson, D. F., Axtell, M. C., Stickles, J. A. Jr. (2011). Zero-divisor graphs in commutative rings. In: Fontana, M., Kabbaj, S.-E., Olberding, B., Swanson, I., eds. *Commutative Algebra, Noetherian and Non-Noetherian Perspectives*. New York: Springer-Verlag, pp. 23–45.
- [6] Beck, I. (1988). Coloring of commutative rings. J. Algebra 116:208–226.
- [7] Bollaboás, B. (1998). Modern Graph Theory. New York: Springer-Verlag.
- [8] Hung-Jen Chiang-Hsieh (2008). Classification of rings with projective zero-divisor graphs. J. Algebra 319:2789–2802.
- [9] Huckaba, J. A. (1988). Commutative Rings with Zero Divisors. New York/Basel: Marcel Dekker.
- [10] Lucas, T. G. (2006). The diameter of a zero-divisor graph. J. Algebra 301:3533–3558.
- [11] Hsin-Ju Wang (2006). Zero-divisor graphs of genus one. J. Algebra 304:666-678.
- [12] Wickham, C. (2009). Rings whose zero-divisor graphs have positive genus. J. Algebra 321:377–383.
- [13] Akbari, S., Maimani, H. R., Yassemi, S. (2003). When a zero-divisor graph is planar or a complete r-partite graph. J. Algebra 270:169–180.
- [14] Maimani, H. R., Pournaki, M. R., Tehranian, A., Yassemi, S. (2011). Graphs attached to rings revisited. Arab. J. Sci. Eng. 36:997–1012.