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ON THE ANNIHILATOR GRAPH OF A COMMUTATIVE RING
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Let R be a commutative ring with nonzero identity, Z�R� be its set of zero-divisors, and

if a ∈ Z�R�, then let annR�a� = �d ∈ R �da = 0�. The annihilator graph of R is the

(undirected) graph AG�R� with vertices Z�R�∗ = Z�R�\�0�, and two distinct vertices

x and y are adjacent if and only if annR�xy� �= annR�x� ∪ annR�y�. It follows that

each edge (path) of the zero-divisor graph ��R� is an edge (path) of AG�R�. In this

article, we study the graph AG�R�. For a commutative ring R, we show that AG�R� is

connected with diameter at most two and with girth at most four provided that AG�R�

has a cycle. Among other things, for a reduced commutative ring R, we show that the

annihilator graph AG�R� is identical to the zero-divisor graph ��R� if and only if R

has exactly two minimal prime ideals.
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1. INTRODUCTION

Let R be a commutative ring with nonzero identity, and let Z�R� be its set
of zero-divisors. Recently, there has been considerable attention in the literature
to associating graphs with algebraic structures (see [8, 11–14]). Probably the most
attention has been to the zero-divisor graph ��R� for a commutative ring R. The
set of vertices of ��R� is Z�R�∗, and two distinct vertices x and y are adjacent if
and only if xy = 0. The concept of a zero-divisor graph goes back to Beck [6],
who let all elements of R be vertices and was mainly interested in colorings. The
zero-divisor graph was introduced by David F. Anderson and Paul S. Livingston
in [3], where it was shown, among other things, that ��R� is connected with
diam���R�� ∈ �0� 1� 2� 3� and gr���R�� ∈ �3� 4���. For a recent survey article on
zero-divisor graphs, see [5]. In this article, we introduce the annihilator graph AG�R�
for a commutative ring R. Let a ∈ Z�R� and let annR�a� = �r ∈ R � ra = 0�. The
annihilator graph of R is the (undirected) graph AG�R� with vertices Z�R�∗ =
Z�R�\�0�, and two distinct vertices x and y are adjacent if and only if annR�xy� �=
annR�x� ∪ annR�y�. It follows that each edge (path) of ��R� is an edge (path) of
AG�R�.
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ON THE ANNIHILATOR GRAPH OF A COMMUTATIVE RING 109

In the second section, we show that AG�R� is connected with diameter at most
two (Theorem 2.2). If AG�R� is not identical to ��R�, then we show that gr�AG�R��
(i.e., the length of a smallest cycle) is at most four (Corollary 2.11). In the third
section, we determine when AG�R� is identical to ��R�. For a reduced commutative
ring R, we show that AG�R� is identical to ��R� if and only if R has exactly two
distinct minimal prime ideals (Theorem 3.6). Among other things, we determine
when AG�R� is a complete graph, a complete bipartite graph, or a star graph.

Let � be a (undirected) graph. We say that � is connected if there is a path
between any two distinct vertices. For vertices x and y of � , we define d�x� y� to be
the length of a shortest path from x to y (d�x� x� = 0 and d�x� y� = � if there is no
path). Then the diameter of � is diam��� = sup�d�x� y� � x and y are vertices of ��.
The girth of � , denoted by gr���, is the length of a shortest cycle in � (gr��� = � if
� contains no cycles).

A graph � is complete if any two distinct vertices are adjacent. The complete
graph with n vertices will be denoted by Kn (we allow n to be an infinite cardinal).
A complete bipartite graph is a graph � which may be partitioned into two disjoint
nonempty vertex sets A and B such that two distinct vertices are adjacent if and only
if they are in distinct vertex sets. If one of the vertex sets is a singleton, then we call
� a star graph. We denote the complete bipartite graph by Km�n, where �A� = m and
�B� = n (again, we allow m and n to be infinite cardinals); so a star graph is a K1�n

and K1�� denotes a star graph with infinitely many vertices. Finally, let K
m�3

be the
graph formed by joining �1 = Km�3 (= A ∪ B with �A� = m and �B� = 3) to the star
graph �2 = K1�m by identifying the center of �2 and a point of B.

Throughout, R will be a commutative ring with nonzero identity, Z�R� its set
of zero-divisors, Nil�R� its set of nilpotent elements, U�R� its group of units, T�R� its
total quotient ring, and Min�R� its set of minimal prime ideals. For any A ⊆ R, let
A∗ = A\�0�. We say that R is reduced if Nil�R� = �0� and that R is quasi-local if R
has a unique maximal ideal. The distance between two distinct vertices a� b of ��R�
is denoted by d��R��a� b�. If AG�R� is identical to ��R�, then we write AG�R� = ��R�;
otherwise, we write AG�R� �= ��R�. As usual, � and �n will denote the integers and
integers modulo n, respectively. Any undefined notation or terminology is standard,
as in [9] or [7].

2. BASIC PROPERTIES OF AG�R�

In this section, we show that AG�R� is connected with diameter at most two. If
AG�R� �= ��R�, we show that gr�AG�R�� ∈ �3� 4�. If �Z�R�∗� = 1 for a commutative
ring R, then R is ring-isomorphic to either Z4 or Z2�X	/�X

2� and hence AG�R� =
��R�. Since commutative rings with exactly one nonzero zero-divisor are studied in
[2, 3, 10], throughout this article we only consider commutative rings with at least
two nonzero zero-divisors.

We begin with a lemma containing several useful properties of AG�R�.

Lemma 2.1. Let R be a commutative ring.

(1) Let x� y be distinct elements of Z�R�∗. Then x − y is not an edge of AG�R� if and
only if annR�xy� = annR�x� or annR�xy� = annR�y�.
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110 BADAWI

(2) If x − y is an edge of ��R� for some distinct x� y ∈ Z�R�∗, then x − y is an edge of
AG�R�. In particular, if P is a path in ��R�, then P is a path in AG�R�.

(3) If x − y is not an edge of AG�R� for some distinct x� y ∈ Z�R�∗, then annR�x� ⊆
annR�y� or annR�y� ⊆ annR�x�.

(4) If annR�x� � annR�y� and annR�y� � annR�x� for some distinct x� y ∈ Z�R�∗, then
x − y is an edge of AG�R�.

(5) If d��R��x� y� = 3 for some distinct x� y ∈ Z�R�∗, then x − y is an edge of AG�R�.
(6) If x − y is not an edge of AG�R� for some distinct x� y ∈ Z�R�∗, then there is a
w ∈ Z�R�∗\�x� y� such that x − w − y is a path in ��R�, and hence x − w − y is also
a path in AG�R�.

Proof. (1) Suppose that x − y is not an edge of AG�R�. Then annR�xy� =
annR�x� ∪ annR�y� by definition. Since annR�xy� is a union of two ideals, we have
annR�xy� = annR�x� or annR�xy� = annR�y�. Conversely, suppose that annR�xy� =
annR�x� or annR�xy� = annR�y�. Then annR�xy� = annR�x� ∪ annR�y�, and thus x −
y is not an edge of AG�R�.

(2) Suppose that x − y is an edge of ��R� for some distinct x� y ∈ Z�R�∗. Then
xy = 0 and hence annR�xy� = R. Since x �= 0 and y �= 0, annR�x� �= R and annR�y� �=
R. Thus x − y is an edge of AG�R�. The “in particular” statement is now clear.

(3) Suppose that x − y is not an edge of AG�R� for some distinct x� y ∈
Z�R�∗. Then annR�x� ∪ annR�y� = annR�xy�. Since annR�xy� is a union of two ideals,
we have annR�x� ⊆ annR�y� or annR�y� ⊆ annR�x�.

(4) This statement is now clear by (3).

(5) Suppose that d��R��x� y� = 3 for some distinct x� y ∈ Z�R�∗. Then
annR�x� � annR�y� and annR�y� � annR�x�. Hence x − y is an edge of AG�R� by (4).

(6) Suppose that x − y is not an edge of AG�R� for some distinct x� y ∈
Z�R�∗. Then there is a w ∈ annR�x� ∩ annR�y� such that w �= 0 by (3). Since xy �= 0,
we have w ∈ Z�R�∗\�x� y�. Hence x − w − y is a path in ��R�, and thus x − w − y is
a path in AG�R� by (2). �

In view of (6) in the preceding lemma, we have the following result.

Theorem 2.2. Let R be a commutative ring with �Z�R�∗� ≥ 2. Then AG�R� is
connected and diam�AG�R�� ≤ 2.

Lemma 2.3. Let R be a commutative ring, and let x� y be distinct nonzero elements.
Suppose that x − y is an edge of AG�R� that is not an edge of ��R� for some distinct
x� y ∈ Z�R�∗. If there is a w ∈ annR�xy�\�x� y� such that wx �= 0 and wy �= 0, then x −
w − y is a path in AG�R� that is not a path in ��R�, and hence C 
 x − w − y − x is a
cycle in AG�R� of length three and each edge of C is not an edge of ��R�.

Proof. Suppose that x − y is an edge of AG�R� that is not an edge of ��R�. Then
xy �= 0. Assume there is a w ∈ annR�xy�\�x� y� such that wx �= 0 and wy �= 0. Since
y ∈ annR�xw�\�annR�x� ∪ annR�w��, we conclude that x − w is an edge of AG�R�.
Since x ∈ annR�yw�\�annR�y� ∪ annR�w��, we conclude that y − w is an edge of
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ON THE ANNIHILATOR GRAPH OF A COMMUTATIVE RING 111

AG�R�. Hence x − w − y is a path in AG�R�. Since xw �= 0 and yw �= 0, we have
x − w − y is not a path in ��R�. It is clear that x − w − y − x is a cycle in AG�R� of
length three and each edge of C is not an edge of ��R�. �

Theorem 2.4. Let R be a commutative ring. Suppose that x − y is an edge of AG�R�
that is not an edge of ��R� for some distinct x� y ∈ Z�R�∗. If xy2 �= 0 and x2y �= 0, then
there is a w ∈ Z�R�∗ such that x − w − y is a path in AG�R� that is not a path in ��R�,
and hence C 
 x − w − y − x is a cycle in AG�R� of length three and each edge of C is
not an edge of ��R�.

Proof. Suppose that x − y is an edge of AG�R� that is not an edge of ��R�.
Then xy �= 0 and there is a w ∈ annR�xy�\�annR�x� ∪ annR�y��. We show w � �x� y�.
Assume w ∈ �x� y�. Then either x2y = 0 or y2x = 0, which is a contradiction. Thus
w � �x� y�. Hence x − w − y is the desired path in AG�R� by Lemma 2.3. �

Corollary 2.5. Let R be a reduced commutative ring. Suppose that x − y is an edge
of AG�R� that is not an edge of ��R� for some distinct x� y ∈ Z�R�∗. Then there is a
w ∈ annR�xy�\�x� y� such that x − w − y is a path in AG�R� that is not a path in ��R�,
and hence C 
 x − w − y − x is a cycle in AG�R� of length three and each edge of C is
not an edge of ��R�.

Proof. Suppose that x − y is an edge of AG�R� that is not an edge of ��R� for
some distinct x� y ∈ Z�R�∗. Since R is reduced, we have �xy�2 �= 0. Hence xy2 �= 0
and x2y �= 0, and thus the claim is now clear by Theorem 2.4. �

In light of Corollary 2.5, we have the following result.

Theorem 2.6. Let R be a reduced commutative ring, and suppose that AG�R� �=
��R�. Then gr�AG�R�� = 3. Furthermore, there is a cycle C of length three in AG�R�
such that each edge of C is not an edge of ��R�.

In view of Theorem 2.4, the following is an example of a nonreduced
commutative ring R where x − y is an edge of AG�R� that is not an edge of ��R�
for some distinct x� y ∈ Z�R�∗, but every path in AG�R� of length two from x to y
is also a path in ��R�.

Example 2.7. Let R = �8. Then 2− 6 is an edge of AG�R� that is not an edge
of ��R�. Now 2− 4− 6 is the only path in AG�R� of length two from 2 to 6
and it is also a path in ��R�. Note that AG�R� = K3, ��R� = K1�2, gr���R�� = �,
gr�AG�R�� = 3, diam���R�� = 2, and diam�AG�R�� = 1.

The following is an example of a nonreduced commutative ring R such that
AG�R� �= ��R� and if x − y is an edge of AG�R� that is not an edge of ��R� for some
distinct x� y ∈ Z�R�∗, then there is no path in AG�R� of length two from x to y.

Example 2.8.

(1) Let R = �2 × �4 and let a = �0� 1�� b = �1� 2�, and c = �0� 3�. Then a− b and
c − b are the only two edges of AG�R� that are not edges of ��R�, but there is
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112 BADAWI

no path in AG�R� of length two from a to b and there is no path in AG�R� of
length two from c to b. Note that AG�R� = K2�3, ��R� = K

1�3
, gr�AG�R�� = 4,

gr���R�� = �, diam�AG�R� = 2, and diam���R�� = 3.
(2) Let R = �2 × �2�X	/�X

2�. Let x = X + �X2� ∈ �2�X	/�X
2�, a = �0� 1�� b =

�1� x�, and c = �0� 1+ x�. Then a− b and c − b are the only two edges of
AG�R� that are not edges of ��R�, but there is no path in AG�R� of length
two from a to b and there is no path in AG�R� of length two from c to b.
Again, note that AG�R� = K2�3, ��R� = K

1�3
, gr�AG�R�� = 4, gr���R�� = �,

diam�AG�R� = 2, and diam���R�� = 3.

Theorem 2.9. Let R be a commutative ring and suppose that AG�R� �= ��R�. Then
the following statements are equivalent:

(1) gr�AG�R�� = 4;
(2) gr�AG�R�� �= 3;
(3) If x − y is an edge of AG�R� that is not an edge of ��R� for some distinct x� y ∈

Z�R�∗, then there is no path in AG�R� of length two from x to y;
(4) There are some distinct x� y ∈ Z�R�∗ such that x − y is an edge of AG�R� that is

not an edge of ��R� and there is no path in AG�R� of length two from x to y;
(5) R is ring-isomorphic to either �2 × �4 or �2 × �2�X	/�X

2�.

Proof. �1� ⇒ �2�. No comments.

�2� ⇒ �3�. Suppose that x − y is an edge of AG�R� that is not an edge of
��R� for some distinct x� y ∈ Z�R�∗. Since gr�AG�R�� �= 3, there is no path in AG�R�
of length two from x to y.

�3� ⇒ �4�. Since AG�R�� �= ��R� by hypothesis, there are some distinct x� y ∈
Z�R�∗ such that x − y is an edge of AG�R� that is not an edge of ��R�, and hence
there is no path in AG�R� of length two from x to y by (3).

�4� ⇒ �5�. Suppose there are some distinct x� y ∈ Z�R�∗ such that x − y is
an edge of AG�R� that is not an edge of ��R� and there is no path in AG�R� of
length two from x to y. Then annR�x� ∩ annR�y� = �0�. Since xy �= 0 and annR�x� ∩
annR�y� = �0�, by Lemma 2.3 we conclude that annR�xy� = annR�x� ∪ annR�y� ∪
�y� such that y2 �= 0 or annR�xy� = annR�x� ∪ annR�y� ∪ �x� such that x2 �= 0 (note
that if �x� y� ⊆ annR�xy�, then x − xy − y is a path in AG�R� of length two).
Without lost of generality, we may assume that annR�xy� = annR�x� ∪ annR�y� ∪ �y�
and y2 �= 0. Let a be a nonzero element of annR�x� and b be a nonzero element
of annR�y�. Since annR�x� ∩ annR�y� = �0�, we have a+ b ∈ annR�xy�\�annR�x� ∪
annR�y��, and hence a+ b = y. Thus �annR�x�� = �annR�y�� = 2. Since xy2 = 0, we
have annR�x� = �0� y2� and annR�y� = �0� xy�. Since y2 + xy = y, we have �y2 +
xy�2 = y2. Since xy3 = 0 and xy2 = x2y2 = 0, we have �y2 + xy�2 = y2 implies that
y4 = y2. Since y2 �= 0 and y4 = y2, we have y2 is a nonzero idempotent of R. Hence
annR�xy� = annR�x� ∪ annR�y� ∪ �y� = �0� y2� xy� y�. Thus annR�xy� ⊆ yR and since
yR ⊆ annR�xy�, we conclude annR�xy� = yR = �0� y2� xy� y�. Since y2 + xy = y and
y4 = y2, we have �y2 + xy�3 = y3 and hence y3 = y2. Thus y2R = y�yR� = �0� y2�.
Since y2 is a nonzero idempotent of R and y2R is a ring with two elements, we
conclude that y2R is ring-isomorphic to �2. Let f ∈ annR�y

2�. Then y2f = y�yf� =
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ON THE ANNIHILATOR GRAPH OF A COMMUTATIVE RING 113

0, and thus yf ∈ annR�y�. Hence either yf = 0 or yf = yx. Suppose yf = 0. Since
annR�y� = �0� xy�, either f = 0 or f = xy. Suppose yf = yx. Then y�f − x� = 0,
and thus f − x = 0 or f − x = xy. Hence f = x or f = x + xy. It is clear that
0� x� xy� x + xy are distinct elements of R and thus annR�y

2� = �0� x� xy� x + xy�.
Since annR�y

2� = �1− y2�R, we have �1− y2�R = �0� x� xy� x + xy�. Since �1− y2�R
is a ring with four elements, we conclude that �1− y2�R is ring-isomorphic to either
�4 or �2 × �2 or F4 or �2�X	/�X

2�. Since x − y is an edge of AG�R� that is not an
edge of ��R� and there is no path in AG�R� of length two from x to y by hypothesis,
we conclude that R is non-reduced by Corollary 2.5. Since R is ring-isomorphic to
y2R× �1− y2�R and non-reduced, we conclude that R is ring-isomorphic to either
�2 × �4 or �2 × �2�X	/�X

2�.

�5� ⇒ �1�. See Example 2.8. �

Corollary 2.10. Let R be a commutative ring such that AG�R� �= ��R�, and assume
that R is not ring-isomorphic to �2 × B, where B = �4 or B = �2�X	/�X

2�. If E is an
edge of AG�R� that is not an edge of ��R�, then E is an edge of a cycle of length three
in AG�R�.

Corollary 2.11. Let R be a commutative ring such that AG�R� �= ��R�. Then
gr�AG�R�� ∈ �3� 4�.

Proof. This result is a direct implication of Theorem 2.9. �

3. WHEN IS AG�R� IDENTICAL TO � �R�?

Let R be a commutative ring such that �Z�R�∗� ≥ 2. Then diam���R�� ∈
�1� 2� 3� by [3, Theorem 2.3]. Hence, if ��R� = AG�R�, then diam���R�� ∈ �1� 2� by
Theorem 2.2. We recall the following results.

Lemma 3.1.

(1) [3, the proof of Theorem 2.8] Let R be a reduced commutative ring that is not an
integral domain. Then ��R� is complete if and only if R is ring-isomorphic to �2 ×
�2.

(2) [10, Theorem 2.6(3)] Let R be a commutative ring. Then diam���R�� = 2 if and
only if either (i) R is reduced with exactly two minimal primes and at least three
nonzero zero divisors, or (ii) Z�R� is an ideal whose square is not {0} and each
pair of distinct zero divisors has a nonzero annihilator.

We first study the case when R is reduced.

Lemma 3.2. Let R be a reduced commutative ring that is not an integral domain, and
let z ∈ Z�R�∗. Then:

(1) annR�z� = annR�z
n� for each positive integer n ≥ 2;

(2) If c + z ∈ Z�R� for some c ∈ annR�z�\�0�, then annR�z+ c� is properly contained
in annR�z� (i.e., annR�c + z� ⊂ annR�z�). In particular, if Z�R� is an ideal of R
and c ∈ annR�z�\�0�, then annR�z+ c� is properly contained in annR�z�.
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114 BADAWI

Proof. (1) Let n ≥ 2. It is clear that annR�z� ⊆ annR�z
n�. Let f ∈ annR�z

n�. Since
fzn = 0 and R is reduced, we have fz = 0. Thus annR�z

n� = annR�z�.

(2) Let c ∈ annR�z�\�0�, and suppose hat c + z ∈ Z�R�. Since z2 �= 0, we have
c + z �= 0, and hence c + z ∈ Z�R�∗. Since c ∈ annR�z� and R is reduced, we have c �
annR�c + z�. Hence annR�c + z� �= annR�z�. Since annR�c + z� ⊂ annR�z�c + z�� =
annR�z

2� and annR�z
2� = annR�z� by (1), it follows that annR�c + z� ⊂ annR�z�. �

Theorem 3.3. Let R be a reduced commutative ring that is not an integral domain.
Then the following statements are equivalent:

(1) AG�R� is complete;
(2) ��R� is complete (and hence AG�R� = ��R�);
(3) R is ring-isomorphic to �2 × �2.

Proof. �1� ⇒ �2�. Let a ∈ Z�R�∗. Suppose that a2 �= a. Since annR�a
3� = annR�a�

by Lemma 3.2(1) and a3 �= 0, we have a− a2 is not an edge of AG�R�, a
contradiction. Thus a2 = a for each a ∈ Z�R�. Let x� y be distinct elements in Z�R�∗.
We show that x − y is an edge of ��R�. Suppose that xy �= 0. Since x − y is an edge
of AG�R�, we have annR�xy� �= annR�x�, and thus xy �= x. Since x2 = x, we have
annR�x�xy�� = annR�x

2y� = annR�xy�, and thus x − xy is not an edge of AG�R�, a
contradiction. Hence xy = 0 and x − y is an edge of ��R�.

�2� ⇒ �3�. It follows from Lemma 3.1(1).

�3� ⇒ �1�. It is easily verified. �

Let R be a reduced commutative ring with �Min�R�� ≥ 2. If Z�R� is an
ideal of R, then Min�R� must be infinite, since Z�R� = ∪�Q �Q ∈ Min�R��. For the
construction of a reduced commutative ring R with infinitely many minimal prime
ideals such that Z�R� is an ideal of R, see [10, Section 5 (Examples)] and [1,
Example 3.13].

Theorem 3.4. Let R be a reduced commutative ring that is not an integral domain,
and assume that Z�R� is an ideal of R. Then AG�R� �= ��R� and gr�AG�R�� = 3.

Proof. Let z ∈ Z�R�∗, c ∈ annR�z�\�0�, and m ∈ annR�c + z�\�0�. Then m ∈
annR�c + z� ⊂ annR�z� by Lemma 3.2(2), and thus mc = 0. Since c2 �= 0, we have
m �= c, and hence c + z �= m+ z. Since �c�m� ⊆ annR�z� and z2 �= 0, we have c + z
and m+ z are nonzero distinct elements of Z�R�. Since �m+ z��c + z� = z2 �= 0, we
have �c + z�− �m+ z� is not an edge of ��R�. Since c2 �= 0 and m2 �= 0, it follows
that �c +m� ∈ annR�z

2�\�annR�c + z� ∪ annR�m+ z��, and thus �c + z�− �m+ z� is
an edge of AG�R�. Since �c + z�− �m+ z� is an edge of AG�R� that is not an edge
of ��R�, we have AG�R� �= ��R�. Since R is reduced and AG�R� �= ��R�, we have
gr�AG�R�� = 3 by Theorem 2.6. �

Theorem 3.5. Let R be a reduced commutative ring with �Min�R�� ≥ 3 (possibly
Min�R� is infinite). Then AG�R� �= ��R� and gr�AG�R�� = 3.
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ON THE ANNIHILATOR GRAPH OF A COMMUTATIVE RING 115

Proof. If Z�R� is an ideal of R, then AG�R� �= ��R� by Theorem 3.4. Hence assume
that Z�R� is not an ideal of R. Since �Min�R�� ≥ 3, we have diam���R�� = 3 by
Lemma 3.1(2), and thus AG�R� �= ��R� by Theorem 2.2. Since R is reduced and
AG�R� �= ��R�, we have gr�AG�R�� = 3 by Theorem 2.6. �

Theorem 3.6. Let R be a reduced commutative ring that is not an integral domain.
Then AG�R� = ��R� if and only if �Min�R�� = 2.

Proof. Suppose that AG�R� = ��R�. Since R is a reduced commutative ring that
is not an integral domain, �Min�R�� = 2 by Theorem 3.5. Conversely, suppose that
�Min�R�� = 2. Let P1, P2 be the minimal prime ideals of R. Since R is reduced, we
have Z�R� = P1 ∪ P2 and P1 ∩ P2 = �0�. Let a� b ∈ Z�R�∗. Assume that a� b ∈ P1.
Since P1 ∩ P2 = �0�, neither a ∈ P2 nor b ∈ P2, and thus ab �= 0. Since P1P2 ⊆ P1 ∩
P2 = �0�, it follows that annR�ab� = annR�a� = annR�b� = P2. Thus a− b is not an
edge of AG�R�. Similarly, if a� b ∈ P2, then a− b is not an edge of AG�R�. If a ∈ P1

and b ∈ P2, then ab = 0, and thus a− b is an edge of AG�R�. Hence each edge of
AG�R� is an edge of ��R�, and therefore, AG�R� = ��R�. �

Theorem 3.7. Let R be a reduced commutative ring. Then the following statements
are equivalent:

(1) gr�AG�R�� = 4;
(2) AG�R� = ��R� and gr���R�� = 4;
(3) gr���R�� = 4;
(4) T�R� is ring-isomorphic to K1 × K2, where each Ki is a field with �Ki� ≥ 3;
(5) �Min�R�� = 2 and each minimal prime ideal of R has at least three distinct elements;
(6) ��R� = Km�n with m�n ≥ 2;
(7) AG�R� = Km�n with m�n ≥ 2.

Proof. �1� ⇒ �2�. Since gr�AG�R�� = 4, AG�R� = ��R� by Theorem 2.6, and thus
gr���R�� = 4. �2� ⇒ �3�. No comments. �3� ⇔ �4� ⇔ �5� ⇔ �6� are clear by [2,
Theorem 2.2]. �6� ⇒ �7�. Since (6) implies �Min�R�� = 2 by [2, Theorem 2.2], we
conclude that AG�R� = ��R� by Theorem 3.6, and thus gr�AG�R�� = gr���R�� = 4.
�7� ⇒ �1�. This is clear since AG�R� is a complete bipartite graph and n�m ≥ 2. �

Theorem 3.8. Let R be a reduced commutative ring that is not an integral domain.
Then the following statements are equivalent:

(1) gr�AG�R�� = �;
(2) AG�R� = ��R� and gr�AG�R�� = �;
(3) gr���R�� = �;
(4) T�R� is ring-isomorphic to Z2 × K, where K is a field;
(5) �Min�R�� = 2 and at least one minimal prime ideal ideal of R has exactly two

distinct elements;
(6) ��R� = K1�n for some n ≥ 1;
(7) AG�R� = K1�n for some n ≥ 1.

Proof. �1� ⇒ �2�. Since gr�AG�R�� = �, AG�R� = ��R� by Theorem 2.6, and
thus gr���R�� = �. �2� ⇒ �3�. No comments. �3� ⇔ �4� ⇔ �5� ⇔ �6� are clear by
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116 BADAWI

[2, Theorem 2.4]. �6� ⇒ �7�. Since (6) implies �Min�R�� = 2 by [2, Theorem 2.4], we
conclude that AG�R� = ��R� by Theorem 3.6, and thus gr�AG�R�� = gr���R�� = �.
�7� ⇒ �1�. It is clear. �

In view of Theorem 3.7 and Theorem 3.8, we have the following result.

Corollary 3.9. Let R be a reduced commutative ring. Then AG�R� = ��R� if and only
if gr�AG�R�� = gr���R�� ∈ �4���.

For the remainder of this section, we study the case when R is nonreduced.

Theorem 3.10. Let R be a nonreduced commutative ring with �Nil�R�∗� ≥ 2 and let
AGN�R� be the (induced) subgraph of AG�R� with vertices Nil�R�∗. Then AGN�R� is
complete.

Proof. Suppose there are nonzero distinct elements a� b∈Nil�R� such that
ab �= 0. Assume that annR�ab�= annR�a� ∪ annR�b�. Hence annR�ab� = annR�a� or
annR�ab� = annR�b�. Without lost of generality, we may assume that annR�ab� =
annR�a�. Let n be the least positive integer such that bn = 0. Suppose that abk �= 0
for each k, 1≤ k<n. Then bn−1 ∈ annR�ab�\annR�a�, a contradiction. Hence assume
that k, 1 ≤ k < n is the least positive integer such that abk = 0. Since ab �= 0, 1 <
k < n. Hence bk−1 ∈ annR�ab�\annR�a�, a contradiction. Thus a− b is an edge of
AGN�R�. �

In view of Theorem 3.10, we have the following result.

Corollary 3.11. Let R be a nonreduced quasi-local commutative ring with maximal
ideal Nil�R� such that �Nil�R�∗� ≥ 2. Then AG�R� is complete. In particular, AG��2n �
is complete for each n ≥ 3 and if q > 2 is a positive prime number of �, then AG��qn�
is complete for each n ≥ 2.

The following is an example of a quasi-local commutative ring R with
maximal ideal Nil�R� such that w2 = 0 for each w ∈ Nil�R�, diam���R��= 2,
diam�AG�R��= 1, and gr�AG�R�� = gr���R�� = 3.

Example 3.12. Let R = �2�X� Y	/�X
2� Y 2�, x = X + �X2� Y 2� ∈ R, and y = Y +

�X2� Y 2� ∈ R. Then R is a quasi-local commutative ring with maximal ideal Nil�R� =
�x� y�R. It is clear that w2 = 0 for each w ∈ Nil�R� and diam�AG�R�� = 1 by
Corollary 3.11. Since Nil�R�2 �= �0� and xyNil�R� = �0�, we have diam���R�� = 2 by
Lemma 3.1(2). Since x − xy − �xy + x�− x is a cycle of length three in ��R�, we have
gr�AG�R�� = gr���R�� = 3.

Theorem 3.13. Let R be a nonreduced commutative ring with �Nil�R�∗� ≥ 2, and let
�N �R� be the induced subgraph of ��R� with vertices Nil�R�∗. Then �N �R� is complete
if and only if Nil�R�2 = �0�.

Proof. If Nil�R�2 = �0�, then it is clear that �N �R� is complete. Hence assume
that �N �R� is complete. We need only show that w2 = 0 for each w∈Nil�R�∗.
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ON THE ANNIHILATOR GRAPH OF A COMMUTATIVE RING 117

Let w∈Nil�R�∗ and assume that w2 �= 0. Let n be the least positive integer such
that wn = 0. Then n ≥ 3. Thus w�wn−1 + w are distinct elements of Nil�R�∗. Since
w�wn−1 + w� = 0 and wn = 0, we have w2 = 0, a contradiction. Thus w2 = 0 for each
w ∈ Nil�R�. �

Theorem 3.14. Let R be a nonreduced commutative ring, and suppose that Nil�R�2 �=
�0�. Then AG�R� �= ��R� and gr�AG�R�� = 3.

Proof. Since Nil�R�2 �= �0�, AG�R� �= ��R� by Theorem 3.10 and Theorem 3.13.
Thus gr�AG�R�� ∈ �3� 4� by Corollary 2.11. Let F = �2 × B, where B is �4 or
�2�X	/�X

2�. Since Nil�F�2 = �0� and Nil�F� �= �0�, we have gr�AG�R�� �= 4 by
Theorem 2.9. Thus gr�AG�R�� = 3. �

Theorem 3.15. Let R be a nonreduced commutative ring such that Z�R� is not an
ideal of R. Then AG�R� �= ��R�.

Proof. Since R is nonreduced and Z�R� is not an ideal of R, diam���R�� = 3 by
[10, Corollary 2.5]. Hence AG�R� �= ��R� by Theorem 2.2. �

Theorem 3.16. Let R be a nonreduced commutative ring. Then the following
statements are equivalent:

(1) gr�AG�R�� = 4;
(2) AG�R� �= ��R� and gr�AG�R�� = 4;
(3) R is ring-isomorphic to either �2 × �4 or �2 × �2�X	/�X

2�;
(4) ��R� = K

1�3
;

(5) AG�R� = K2�3.

Proof. �1� ⇒ �2�. Suppose AG�R� = ��R�. Then gr���R�� = 4, and R is ring-
isomorphic to D× B, where D is an integral domain with �D� ≥ 3 and B = �4

or �2�X	/�X
2� by [2, Theorem 2.3]. Assume that R is ring-isomorphic to D× �4.

Since �D� ≥ 3, there is an a ∈ D\�0� 1�. Let x = �0� 1�� y = �1� 2�� w = �a� 2� ∈ R.
Then x� y� w are distinct elements in Z�R�∗, w�xy� = �0� 0�, wx �= �0� 0�, and wy �=
�0� 0�. Thus x − w − y − x is a cycle of length three in AG�R� by Lemma 2.3,
a contradiction. Similarly, assume that R is ring-isomorphic to D× �2�X	/�X

2�.
Again, since �D� ≥ 3, there is an a ∈ D\�0� 1�. Let x = X + �X2� ∈ �2�X	/�X

2�. Then
it is easily verified that �0� 1�− �a� x�− �1� x�− �0� 1� is a cycle of length three in
AG�R�, a contradiction. Thus AG�R� �= ��R�. �2� ⇒ �3�. It is clear by Theorem 2.9.
�3� ⇔ �4�. It is clear by [2, Theorem 2.5]. �4� ⇒ �5�. Since (4) implies (3) by [2,
Theorem 2.5], it is easily verified that the annihilator graph of the two rings in (3)
is K2�3. �4� ⇒ �5�. Since AG�R� is a K2�3, it is clear that gr�AG�R�� = 4. �

We observe that gr����8�� = �, but gr�AG��8�� = 3. We have the following
result.

Theorem 3.17. Let R be a commutative ring such that AG�R� �= ��R�. Then the
following statements are equivalent:

(1) ��R� is a star graph;
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118 BADAWI

(2) ��R� = K1�2;
(3) AG�R� = K3.

Proof. �1� ⇒ �2�. Since gr���R�� = � and ��R� �= AG�R�, we have R is non-
reduced by Corollary 3.9 and �Z�R�∗� ≥ 3. Since ��R�� is a star graph, there are two
sets A�B such that Z�R�∗ = A ∪ B with �A� = 1, A ∩ B = ∅, AB = �0�, and b1b2 �=
0 for every b1� b2 ∈ B. Since �A� = 1, we may assume that A = �w� for some w ∈
Z�R�∗. Since each edge of ��R� is an edge of AG�R� and AG�R� �= ��R�, there
are some x� y ∈ B such that x − y is an edge of AG�R� that is not an edge of
��R�. Since annR�c� = w for each c ∈ B and annR�xy� �= annR�x� ∪ annR�y�, we
have annR�xy� �= w. Thus annR�xy� = B and xy = w. Since A = �xy� and AB =
�0�, we have x�xy� = x2y = 0 and y�xy� = y2x= 0. We show that B = �x� y�, and
hence �B� = 2. Thus assume there is a c ∈ B such that c �= x and c �= y. Then
wc = xyc= 0. We show that �xc + xy� �= x and �xc + xy� �= xy (note that xy = w).
Suppose that �xc + xy� = x. Then y�xc + xy� = yx. But y�xc + xy� = yxc + xy2 =
0+ 0 = 0 and xy �= 0, a contradiction. Hence x �= �xc + xy�. Since x� c ∈ B, we have
xc �= 0 and thus �xc + xy� �= xy. Thus x� �xc + xy�� xy are distinct elements of Z�R�∗.
Since x2y = 0 and y ∈ B, either x2 = 0 or x2 = xy or x2 = y. Suppose that x2 = y.
Since xy = w �= 0, we have xy = x�x2� = x3 = w �= 0. Since x2y = 0, we have x4 =
0. Since x4 = 0 and x3 �= 0, we have x2� x3� x2 + x3 are distinct elements of Z�R�∗,
and thus x2 − x3 − �x2 + x3�− x2 is a cycle of length three in ��R�, a contradiction.
Hence, we assume that either x2 = 0 or x2 = xy = w. In both cases, we have x2c =
0. Since x� �xc + xy�� xy are distinct elements of Z�R�∗ and xy2 = yx2 = x2c = 0, we
have x − �xc + xy�− xy − x is a cycle of length three in ��R�, a contradiction. Thus
B = �x� y� and �B� = 2. Hence ��R� = K1�2. �2� ⇒ �3�. Since each edge of ��R� is an
edge of AG�R� and ��R� �= AG�R� and ��R� = K1�2, it is clear that AG�R� must be
K3. �3� ⇒ �1�. Since �Z�R�∗� = 3 and ��R� is connected and AG�R� �= ��R�, exactly
one edge of AG�R� is not an edge of ��R�. Thus ��R� is a star graph. �

Theorem 3.18. Let R be a non-reduced commutative ring with �Z�R�∗� ≥ 2. Then the
following statements are equivalent:

(1) AG�R� is a star graph;
(2) gr�AG�R�� = �;
(3) AG�R� = ��R� and gr���R�� = �;
(4) Nil�R� is a prime ideal of R and either Z�R� = Nil�R� = �0�−w�w� (w �= −w)

for some nonzero w ∈ R or Z�R� �= Nil�R� and Nil�R� = �0� w� for some nonzero
w ∈ R (and hence wZ�R� = �0�);

(5) Either AG�R� = K1�1 or AG�R� = K1��;
(6) Either ��R� = K1�1 or ��R� = K1��.

Proof. �1� ⇒ �2�. It is clear by the definition of the star graph. �2� ⇒ �3�.
Since gr�AG�R�� = �, AG�R� = ��R� by Corollary 2.11, and thus gr���R�� = �.
�3� ⇒ �4�. Suppose that �Nil�R�∗� ≥ 3. Since AGN�R� is complete by Theorem 3.10
and �Nil�R�∗� ≥ 3, we have gr�AG�R�� = gr���R�� = 3, a contradiction. Thus
�Nil�R�∗� ∈ �1� 2�. Suppose �Nil�R�∗� = 2. Then Nil�R� = �0� w�−w� (w �= −w) for
some nonzero w ∈ R. We show Z�R� = Nil�R�. Assume there is a k ∈ Z�R�\Nil�R�.
Suppose that wk = 0. Since Nil�R�2 = �0�, w − k− �−w�− w is a cycle of length
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ON THE ANNIHILATOR GRAPH OF A COMMUTATIVE RING 119

three in ��R�, a contradiction. Thus assume that wk �= 0. Hence there is an
f ∈ Z�R�∗\�w�−w� k�, such that w − f − z is a path of length two in ��R� by
Theorem 2.2 (note that we are assuming that AG�R� = ��R�). Thus w − f − �−w�−
w is a cycle of length three in ��R�, a contradiction. Hence if �Nil�R�∗� = 2, then
Z�R� = Nil�R�. Thus assume that Nil�R� = �0� w� for some nonzero w ∈ R. We show
Nil�R� is a prime ideal of R. Since gr�AG�R�� = gr���R�� = �, we have AG�R� =
��R� is a star graph by [2, Theorem 2.5] and Theorem 3.16. Since �Z�R�∗� ≥ 2 by
hypothesis and �Nil�R�∗� = 1, we have Z�R� �= Nil�R�. Let c ∈ Z�R�∗\Nil�R�∗. We
show wc = 0. Suppose that wc �= 0. Since �Nil�R�∗� = 1 and wc �= 0, we have wc =
w. Thus w�c − 1� = 0. Since w + 1 ∈ U�R� and c � U�R�, we have c − 1 �= w. Since
��R� is a star graph and w�c − 1� = 0 and wc �= 0, we have �c − 1�j = 0 for each j ∈
Z�R�∗\�c − 1�. In particular, �c − 1���c − 1�+ w	 = 0, and therefore w − �c − 1�−
�c − 1+ w�− w is a cycle of length three in ��R�, a contradiction. Hence wc = 0.
Since wZ�R� = �0� and ��R� is a star graph, we have Nil�R� = �0� w� is a prime
ideal of R. �4� ⇒ �5�. Suppose that Nil�R� is a prime ideal of R. If Z�R� = Nil�R�

and �Nil�R�∗� = 2, then AG�R� = K1�1. Hence, assume that Nil�R� = �0� w� for some
nonzero w ∈ R. We show that Z�R� is an infinite set. Let c ∈ Z�R�\Nil�R� and let
n > m ≥ 1. We show that cm �= cn. Suppose that cm = cn. Then cm�1− cn−m� = 0.
Since Nil�R� = �0� w� is a prime ideal of R, we have �1− cn−m� = w. Since 1− w ∈
U�R�, we have 1− w = cn−m ∈ U�R�, a contradiction. Thus cm �= cn, and hence Z�R�
is an infinite set. Since Nil�R� = �0� w� is a prime ideal of R and wZ�R� = �0�, we
have AG�R� = K1��. �5� ⇒ �6�. It is clear. �6� ⇒ �1�. Since ��R� is a star graph and
��R� �= K1�2, we have AG�R� = ��R� by Theorem 3.17, and thus gr�AG�R�� = �.

�

Corollary 3.19 ([3, Theorem 2.13], [2, Remark 2.6(a)], and [4, Theorem 3.9]). Let
R be a nonreduced commutative ring with �Z�R�∗� ≥ 2. Then ��R� is a star graph if
and only if ��R� = K1�1, ��R� = K1�2, or ��R� = K1��.

Proof. The proof is a direct implication of Theorems 3.17 and 3.18. �

In the following example, we construct two nonreduced commutative rings say
R1 and R2, where AG�R1� = K1�1 and AG�R2� = K1��.

Example 3.20.

(1) Let R1 = �3�X	/�X
2�, and let x = X + �X2� ∈ R1. Then Z�R1� = Nil�R1� =

�0�−x� x� and AG�R1� = ��R1� = K1�1. Also note that AG��9� = ���9� = K1�1.
(2) Let R2 = �2�X� Y	/�XY�X

2�. Then let x = X + �XY + X2� and y = Y + �XY +
X2� ∈ R2. Then Z�R2� = �x� y�R2, Nil�R2� = �0� x�, and Z�R2� �= Nil�R2�. It is
clear that AG�R2� = ��R2� = K1��.

Remark 3.21. Let R be a nonreduced commutative ring. In view of Theorem 3.15,
Theorem 3.16, and Theorem 3.18, if AG�R� = ��R�, then Z�R� is an ideal of R and
gr�AG�R�� = gr���R�� ∈ �3���. The converse is true if gr�AG�R� = gr���R�� = �
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120 BADAWI

(see Theorems 3.15 and 3.18). However, if Z�R� is an ideal of R and gr�AG�R�� =
gr���R�� = 3, then it is possible to have all the following cases:

(1) It is possible to have a commutative ring R such that Z�R� is an ideal of R,
Z�R� �= Nil�R�, AG�R� = ��R�, and gr�AG�R�� = 3. See Example 3.22;

(2) It is possible to have a commutative ring R such that Z�R� is an ideal of R,
Z�R� �= Nil�R�, Nil�R�2 = �0�, AG�R� �= ��R�, diam�AG�R�� = diam���R�� = 2,
and gr�AG�R�� = gr���R�� = 3. See Example 3.23.

(3) It is possible to have a commutative ring R such that Z�R� is an
ideal of R, Z�R� �= Nil�R�, Nil�R�2 = �0�, AG�R� is a complete graph
(i.e., diam�AG�R�� = 1), AG�R� �= ��R�, diam���R�� = 2, and gr�AG�R�� =
gr���R�� = 3. See Theorem 3.24.

Example 3.22. Let D = �2�X� Y�W	, I = �X2� Y 2� XY�XW�D be an ideal of D, and
let R = D/I . Then let x = X + I� y = Y + I , and w = W + I be elements of R. Then
Nil�R� = �x� y�R and Z�R� = �x� y� w�R is an ideal of R. By construction, we have
Nil�R�2 = �0�, AG�R� = ��R�, diam�AG�R�� = diam���R�� = 2, and gr�AG�R�� =
gr���R�� = 3 (for example, x − �x + y�− y − x is a cycle of length three).

Example 3.23. Let D = �2�X� Y�W	, I = �X2� Y 2� XY�XW� YW 3�D be an ideal
of D, and let R = D/I . Then let x = X + I� y = Y + I , and w = W + I be
elements of R. Then Nil�R� = �x� y�R and Z�R� = �x� y� w�R is an ideal of
R. By construction, Nil�R�2 = �0�, diam�AG�R�� = diam���R�� = 2, gr�AG�R�� =
gr���R�� = 3. However, since w3 �= 0 and y ∈ annR�w

3�\�annR�w� ∪ annR�w
2��, we

have w − w2 is an edge of AG�R� that is not an edge of ��R�, and hence AG�R� �=
��R�.

Given a commutative ring R and an R-module M , the idealization of M is
the ring R�+�M = R×M with addition defined by �r�m�+ �s� n� = �r + s�m+ n�
and multiplication defined by �r�m��s� n� = �rs� rn+ sm� for all r� s ∈ R and m�n ∈
M . Note that �0��+�M ⊆ Nil�R�+�M� since ��0��+�M�2 = ��0� 0��. We have the
following result.

Theorem 3.24. Let D be a principal ideal domain that is not a field with quotient
field K (for example, let D = � or D = F�X	 for some field F), and let Q = �p� be a
nonzero prime ideal of D for some prime (irreducible) element p ∈ D. Set M = K/DQ

and R = D�+�M . Then Z�R� �= Nil�R�, AG�R� is a complete graph, AG�R� �= ��R�,
and gr�AG�R�� = gr���R�� = 3.

Proof. By construction of R, Z�R� = Q�+�M , Nil�R� = �0��+�M , and Nil�R�2 =
��0� 0��. Let x� y be distinct elements of Z�R�∗, and suppose that xy �= 0. Since
Nil�R�2 = ��0� 0��, to show that AG�R� is complete, we consider two cases. Case I:
assume x ∈ Nil�R�∗ and y ∈ Z�R�\Nil�R�. Then x = �0� a

cpm
+DQ� for some nonzero

a ∈ D, c ∈ D\Q, and some positive integer m ≥ 1 such that gcd�a� cpm� = 1, and
y = �hpn� f� for some positive integer n ≥ 1, a nonzero h ∈ D, and f ∈ M . Since
xy �= 0, we have n < m. Hence xy = �0� ha

cpm−n +DQ� ∈ Nil�R�∗. Since �pm−n� 0� ∈
annR�xy�\�annR�x� ∪ annR�y��, we have x − y is an edge of AG�R�. Case II: assume
that x� y ∈ Z�R�∗\Nil�R�∗. Then x = �dpu� g� and y = �vpr� w� for some positive

D
ow

nl
oa

de
d 

by
 [A

m
er

ic
an

 U
ni

ve
rs

ity
 o

f S
ha

rja
h]

, [
A

ym
an

 B
ad

aw
i] 

at
 0

6:
32

 1
8 

O
ct

ob
er

 2
01

3 



ON THE ANNIHILATOR GRAPH OF A COMMUTATIVE RING 121

integers u� r ≥ 1, nonzero d� v ∈ D\Q, and g� w ∈ M . Hence xy = �dvpu+r � dpuw +
vprg�. Since �0� 1

pu+r +DQ� ∈ annR�xy�\�annR�x� ∪ annR�y��, we have x − y is an
edge of AG�R�. Since �0� 1

p
+DQ�− �0� 1

p2
+DQ�− �0� 1

p3
+DQ�− �0� 1

p
+DQ� is a

cycle of length three in ��R�, we have gr�AG�R�� = gr���R�� = 3. �

The following example shows that the hypothesis “Q is principal” in the above
theorem is crucial.

Example 3.25. Let D = ��X	 with quotient field K and Q = �2� X�D. Then Q is
a nonprincipal prime ideal of D. Set M = K/DQ and R = D�+�M . Then Z�R� =
Q�+�M , Nil�R� = �0��+�M , and Nil�R�2 = ��0� 0��. Let a = �2� 0� and b = �0� 1

X
+

DQ�. Then ab = �0� 2
X
+DQ� ∈ Nil�R�∗. Since annR�ab� = annR�b�, we have a− b is

not an edge of AG�R�. Thus AG�R� is not a complete graph.
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